#!/usr/bin/env julia using DataFrames using Dates using CSV using EzXML using Images using Colors #using ImageDraw using CairoMakie using Printf using TimeZones using PlotUtils #using Profile struct StationInfo id::String name::String num::Int64 lat::Float32 lon::Float32 end function get_station_info(station_id) stations = readxml("activestations.xml") station_node = findfirst("/stations/station[@id=\"$station_id\"]", stations) # name = strip(station_node["name"]) num, name = split(name, " - ") lat, lon = parse.(Float32, [station_node["lat"], station_node["lon"]]) return StationInfo(station_id, name, parse(Int, num), lat, lon) end function get_station_lat_lon(station_id) stations = readxml("activestations.xml") station_node = findfirst("/stations/station[@id=\"$station_id\"]", stations) return parse.(Float32, [station_node["lat"], station_node["lon"]]) end tryparsem(T, str) = something(tryparse(T, str), missing) function get_tile_xy_fraction(lat, lon, zoom) n = 2^zoom lat_rad = lat * pi / 180 xtile = (lon + 180) / 360 * n ytile = (1 - log(tan(lat_rad) + 1 / cos(lat_rad)) / pi) / 2 * n return xtile, ytile end function get_tile_xy(lat, lon, zoom) xf, yf = get_tile_xy_fraction(lat, lon, zoom) return (Int(floor(xf)), Int(floor(yf))) end function get_tile(x, y, zoom) url = "https://tile.openstreetmap.org/$zoom/$x/$y.png" tmp_path = download(url) tile = load(tmp_path) return tile end function get_tile_by_lat_lon(lat, lon, zoom) xtile, ytile = get_tile_xy(lat, lon, zoom) return get_tile(xtile, ytile, zoom) end function get_water_levels(station_number, start_date, end_date; timezone=tz"America/New_York", prediction=false) start_s = Dates.format(start_date, "yyyymmdd") end_s = Dates.format(end_date, "yyyymmdd") if prediction prod = "predictions" else prod = "water_level" end url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter?product=$(prod)&application=NOS.COOPS.TAC.WL&begin_date=$(start_s)&end_date=$(end_s)&datum=MLLW&station=$(station_number)&time_zone=lst_ldt&units=english&format=csv" if prediction url *= "&interval=hilo" end tmp_path = download(url) df = open(tmp_path) do file CSV.read(file, DataFrame) end dt_local = (dt_s) -> DateTime.(dt_s, "yyyy-mm-dd HH:MM") transform!(df, "Date Time" => dt_local => "TIME", " Water Level" => "WLEVEL") return df[(start_date .<= df.TIME .<= end_date), :] end function get_meters_per_pixel(lat, zoom) px_per_tile = 256 return 156543.03 * cos(lat) / (2^zoom) end function get_map(lat, lon, zoom) px_per_tile = 256 crop_size = 2 * px_per_tile meters_per_pixel = get_meters_per_pixel(lat, zoom) xf, yf = get_tile_xy_fraction(lat, lon, zoom) x0, y0 = (Int(floor(xf)), Int(floor(yf))) xpoint = 1 + px_per_tile + Int(floor((xf - x0) * px_per_tile)) ypoint = 1 + px_per_tile + Int(floor((yf - y0) * px_per_tile)) half_size = Int(floor(crop_size / 2)) ystart = ypoint - half_size yend = ypoint + half_size xstart = xpoint - half_size xend = xpoint + half_size xpoint -= xstart ypoint -= ystart cache_path = "cache/$(lat)_$(lon)_$zoom.png" if isfile(cache_path) map = Images.load(cache_path) return map, xpoint, ypoint end map = Array{RGB{N0f8}, 2}(undef, (px_per_tile * 3, px_per_tile * 3)) for i in -1:1 x = x0 + i ioffset = 1 + (i + 1) * px_per_tile for j in -1:1 y = y0 + j joffset = 1 + (j + 1) * px_per_tile img = get_tile(x, y, zoom) map[joffset:joffset+px_per_tile-1, ioffset:ioffset+px_per_tile-1] = img end end map = map[ystart:yend, xstart:xend] #draw!(map, Ellipse(CirclePointRadius(xpoint, ypoint, 6)), # RGB{N0f8}(0.5, 0.0, 0.5)) Images.save(cache_path, map) return map, xpoint, ypoint end function get_realtime_data_file(station) station = uppercase(station) url = "http://www.ndbc.noaa.gov/data/realtime2/$station.txt" return download(url) end function get_realtime_dataframe(station_name; timezone=tz"America/New_York") station_fname = get_realtime_data_file(station_name) lines = open(station_fname) do file readlines(file) end dt_array = (y, mon, d, hr, min) -> (astimezone.(ZonedDateTime.( DateTime.(y, mon, d, hr, min), tz"UTC"), timezone)) deg_c_to_f = passmissing(x -> x * 9.0 / 5.0 + 32.0) speed_ms_to_mph = passmissing(x -> 0.44704 * x) lines[1] = lstrip(lines[1], '#') data = join([lines[1:1]; lines[3:end]], "\n") df = CSV.read(IOBuffer(data), DataFrame; header=1, delim=" ", ignorerepeated=true) select!(df, [:YY, :MM, :DD, :hh, :mm] => dt_array => :TIME, :WDIR => x -> tryparsem.(Int, x), :WSPD => x -> speed_ms_to_mph.(tryparsem.(Float32, x)), :GST => x -> speed_ms_to_mph.(tryparsem.(Float32, x)), :PRES => x -> tryparsem.(Float32, x), :ATMP => x -> deg_c_to_f.(tryparsem.(Float32, x)), :WTMP => x -> deg_c_to_f.(tryparsem.(Float32, x)); renamecols=false) return df end function plot_station_data(station_name, station_map, station_x, station_y, df, i) fig = Figure(resolution=size(station_map), figure_padding=0) ax = CairoMakie.Axis(fig[1, 1]) hidespines!(ax) hidedecorations!(ax) plot_station_data_to_axis(ax, station_name, station_map, station_x, station_y, df, i) return fig end function plot_station_data_to_axis(ax, station_name, station_map, station_x, station_y, df, i, old_plots=()) obs_time = df.TIME[i] obs_time_s = Dates.format(obs_time, "e, u d H:MM") if length(old_plots) == 0 plot_img = image!(ax, rotr90(station_map)) else plot_img = old_plots[1] delete!(ax, old_plots[2]) delete!(ax, old_plots[3]) end ax.title = "$station_name $obs_time_s" wind_rad = passmissing(deg2rad)(90 - df.WDIR[i]) wind_mph = df.WSPD[i] if ismissing(wind_mph) || ismissing(wind_rad) wind_mph = 0.0 wind_rad = 0 end atmp = df.ATMP[i] wtmp = df.WTMP[i] if ismissing(atmp) atmp = 0.0 end if ismissing(wtmp) wtmp = 0.0 end txt = @sprintf "Air: %.1f F, Water: %.1f F, Wind: %.1f mph" atmp wtmp wind_mph wind_vec = 50 * Vec2f(cos(wind_rad), sin(wind_rad)) * wind_mph / 10 station_y += 50 # Why is this off by 50??? #water_temp_color = RGB(0, 0, 0.1 + 0.9 * (wtmp - 40) / 40) #air_temp_color = RGB(0.5 + (atmp - 40) / 90, 0, 0) plot_tooltip = tooltip!(ax, station_x, station_y, txt; offset=15, placement=:above) plot_arrow = arrows!(ax, [Point2f(station_x, station_y)], [wind_vec], fxaa=true, linewidth=2, align=:center, arrowhead='⟰') return plot_img, plot_tooltip, plot_arrow end function timestamp_range(timestamps, t0::Dates.DateTime) return Dates.value.(timestamps) .- Dates.value(t0) end struct DateTimeTicks t0::Dates.DateTime end # See https://github.com/MakieOrg/Makie.jl/issues/442#issuecomment-1446004881 function Makie.get_ticks(t::DateTimeTicks, any_scale, ::Makie.Automatic, vmin, vmax) dateticks, dateticklabels = PlotUtils.optimize_datetime_ticks( Dates.value(Dates.DateTime(Dates.Millisecond(Int64(vmin)) + t.t0)), Dates.value(Dates.DateTime(Dates.Millisecond(Int64(vmax)) + t.t0)), ) dtformat = "e H:MM" labels = [Dates.format(convert(Dates.DateTime, Millisecond(v)), dtformat) for v in dateticks] return dateticks .- Dates.value(t.t0), labels end function save_animation(station_name, out_path, hours, real_hour_per_animation_second) info = get_station_info(station_name) lat, lon = info.lat, info.lon station_map, station_x, station_y = get_map(lat, lon, 14) df = get_realtime_dataframe(station_name; timezone=tz"America/New_York") diff_hours = (df.TIME[1] - df.TIME[2]).value / 1000 / 3600 stride = Int(ceil(real_hour_per_animation_second / diff_hours)) end_index = Int(min(stride * hours + 1, size(df, 1))) data_indexes = range(1, end_index; step=stride) df_recent = reverse(@view df[1:end_index, :]) df_ts = select(df_recent, :TIME => x -> Dates.DateTime.(x), renamecols=false) df_tides = get_water_levels(info.num, df_ts.TIME[1], df_ts.TIME[end]) fig_res = (size(station_map, 1), Int(floor(size(station_map, 2) * 1.5))) fig = Figure(resolution=fig_res, figure_padding=0) t0 = df_ts.TIME[1] ax_temp = CairoMakie.Axis(fig[1, 1], xticks=DateTimeTicks(t0), ylabel="°F") ax_wind = CairoMakie.Axis(fig[1, 1], xticks=DateTimeTicks(t0), ylabel="mph", yaxisposition=:right, ygridvisible=false, xgridvisible=false, xticksvisible=false, xticklabelsvisible=false) ax_tide= CairoMakie.Axis(fig[2, 1], xticks=DateTimeTicks(t0), ylabel="ft") ax = CairoMakie.Axis(fig[3, 1]) hidespines!(ax) hidedecorations!(ax) rowsize!(fig.layout, 1, Auto(0.3)) rowsize!(fig.layout, 2, Auto(0.2)) xs_time = timestamp_range(df_ts.TIME, t0) lines!(ax_temp, xs_time, df_recent.WTMP, color=:darkblue) lines!(ax_temp, xs_time, df_recent.ATMP, color=:brown) lines!(ax_wind, xs_time, df_recent.WSPD, color=:skyblue) old_vline = vlines!(ax_temp, xs_time[1], color=:black, linewidth=5) lines!(ax_tide, xs_time, df_tides.WLEVEL, color=:blue) old_plots = () record(fig, out_path, data_indexes; framerate=1) do i old_plots = plot_station_data_to_axis(ax, station_name, station_map, station_x, station_y, df_recent, i, old_plots) delete!(ax_temp, old_vline) old_vline = vlines!(ax_temp, xs_time[i], color=:black, linewidth=5) end save(replace(out_path, r"\..*" => ".png"), fig) end function main() if (length(ARGS) < 1) println("Usage: create_latest_map.jl station_name [out_path]") exit(1) end station_name = ARGS[1] out_fname = "$station_name.png" if length(ARGS) > 1 out_fname = ARGS[2] end if any(endswith.(out_fname, [".gif", ".webm", ".mp4", ".mkv"])) save_animation(station_name, out_fname, 48, 1) else lat, lon = get_station_lat_lon(station_name) station_map, station_x, station_y = get_map(lat, lon, 14) df = get_realtime_dataframe(station_name; timezone=tz"America/New_York") fig = plot_station_data(station_name, station_map, station_x, station_y, df, 1) save(out_fname, fig) end end main() #Profile.print()