parent
73fe0ff8f2
commit
68a28432e5
@ -0,0 +1,147 @@
|
|||||||
|
#!/usr/bin/env julia
|
||||||
|
|
||||||
|
using DelimitedFiles
|
||||||
|
using KernelAbstractions, Adapt, OffsetArrays
|
||||||
|
|
||||||
|
const BACKEND = :CUDA
|
||||||
|
|
||||||
|
if BACKEND == :CUDA
|
||||||
|
using CUDA, CUDAKernels
|
||||||
|
const ArrayT = CuArray
|
||||||
|
const Device = CUDADevice
|
||||||
|
elseif BACKEND == :AMD
|
||||||
|
using AMDGPU, ROCMKernels
|
||||||
|
const ArrayT = CuArray
|
||||||
|
const Device = CUDADevice
|
||||||
|
else BACKEND == :CPU
|
||||||
|
const ArrayT = Array
|
||||||
|
const Device = CPU
|
||||||
|
end
|
||||||
|
|
||||||
|
function heat1d_ftcs_cpu(diffusivity, xlength, left_boundary,
|
||||||
|
right_boundary, init_fn,
|
||||||
|
dt, nsteps, dx, print_at_steps, outf,
|
||||||
|
psource_x, psource_value)
|
||||||
|
npoints = ceil(Int, xlength / dx) + 1
|
||||||
|
T1 = zeros(Float32, npoints)
|
||||||
|
T2 = similar(T1)
|
||||||
|
xs = range(0.0, xlength, length=npoints)
|
||||||
|
|
||||||
|
c = diffusivity * dt / dx^2
|
||||||
|
psource_offset = ceil(Int, psource_x / xlength * npoints)
|
||||||
|
psource_dt = psource_value * dt
|
||||||
|
|
||||||
|
if c > 0.5
|
||||||
|
println("c = ", c)
|
||||||
|
return -1
|
||||||
|
end
|
||||||
|
|
||||||
|
T1[1] = left_boundary
|
||||||
|
T1[end] = right_boundary
|
||||||
|
T2[1] = left_boundary
|
||||||
|
T2[end] = right_boundary
|
||||||
|
|
||||||
|
T1[2:end-1] = init_fn.(xs[2:end-1])
|
||||||
|
|
||||||
|
# first line of output is x values, for plotting
|
||||||
|
writedlm(outf, xs', ',')
|
||||||
|
|
||||||
|
# output initial condition state
|
||||||
|
writedlm(outf, T1', ',')
|
||||||
|
|
||||||
|
for j in 1:2:nsteps
|
||||||
|
for i in 2:npoints-1
|
||||||
|
T2[i] = T1[i] + c * (T1[i+1] - 2.0 * T1[i] + T1[i-1])
|
||||||
|
if i == psource_offset
|
||||||
|
|
||||||
|
T2[i] += psource_dt
|
||||||
|
end
|
||||||
|
end
|
||||||
|
for i in 2:npoints-1
|
||||||
|
T1[i] = T2[i] + c * (T2[i+1] - 2.0 * T2[i] + T2[i-1])
|
||||||
|
if i == psource_offset
|
||||||
|
T1[i] += psource_dt
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if mod(j+1, print_at_steps) == 0
|
||||||
|
writedlm(outf, T1', ',')
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
@kernel function gpu_ftcs_step!(T, Told, c, psource_offset, psource_dt)
|
||||||
|
i = @index(Global) + 1
|
||||||
|
#start_idx = (blockIdx().x - 1) * blockDim().x + threadIdx().x + 1
|
||||||
|
#stride = gridDim().x * blockDim().x
|
||||||
|
@inbounds Ti = Told[i] + c * (Told[i+1] - 2.0 * Told[i] + Told[i-1])
|
||||||
|
if i == psource_offset
|
||||||
|
Ti += psource_dt
|
||||||
|
end
|
||||||
|
T[i] = Ti
|
||||||
|
end
|
||||||
|
|
||||||
|
function heat1d_ftcs_ka(diffusivity, xlength, left_boundary,
|
||||||
|
right_boundary, init_fn,
|
||||||
|
dt, nsteps, dx, print_at_steps, outf,
|
||||||
|
psource_x, psource_value)
|
||||||
|
npoints = Int(ceil(xlength / dx)) + 1
|
||||||
|
T = zeros(Float32, npoints)
|
||||||
|
xs = range(0.0, xlength, length=npoints)
|
||||||
|
|
||||||
|
T1_d = CuArray{Float32}(undef, length(T))
|
||||||
|
T2_d = similar(T1_d)
|
||||||
|
|
||||||
|
c = diffusivity * dt / dx^2
|
||||||
|
psource_offset = ceil(Int, psource_x / xlength * npoints)
|
||||||
|
psource_dt = psource_value * dt
|
||||||
|
|
||||||
|
if c > 0.5
|
||||||
|
println("c = ", c)
|
||||||
|
return -1
|
||||||
|
end
|
||||||
|
|
||||||
|
T[1] = left_boundary
|
||||||
|
T[end] = right_boundary
|
||||||
|
|
||||||
|
T[2:end-1] = init_fn.(xs[2:end-1])
|
||||||
|
|
||||||
|
# first line of output is x values, for plotting
|
||||||
|
writedlm(outf, xs', ',')
|
||||||
|
|
||||||
|
# output initial condition state
|
||||||
|
writedlm(outf, T', ',')
|
||||||
|
|
||||||
|
copyto!(T1_d, T)
|
||||||
|
|
||||||
|
NTHREADS = 128
|
||||||
|
NBLOCKS = ceil(Int, (length(T)-2) / NTHREADS)
|
||||||
|
|
||||||
|
kstep = gpu_ftcs_step!(Device())
|
||||||
|
|
||||||
|
for j in 1:2:nsteps
|
||||||
|
stepa = kstep(T2_d, T1_d, c, psource_offset, psource_dt;
|
||||||
|
ndrange=length(T)-2)
|
||||||
|
stepb = kstep(T1_d, T2_d, c, psource_offset, psource_dt;
|
||||||
|
ndrange=length(T)-2, dependencies=stepa)
|
||||||
|
wait(stepb)
|
||||||
|
if mod(j+1, print_at_steps) == 0
|
||||||
|
copyto!(T, T1_d)
|
||||||
|
writedlm(outf, T', ',')
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function gaussian1d(x)
|
||||||
|
return exp(-(5.0*(x-0.5))^2)
|
||||||
|
end
|
||||||
|
|
||||||
|
function test_ka()
|
||||||
|
CUDA.allowscalar(false)
|
||||||
|
open("out/heat1d_ka.txt", "w") do io
|
||||||
|
heat1d_ftcs_ka(0.001, 1.0, 0.0, 0.0, gaussian1d,
|
||||||
|
0.0004, 2, 2^-10, 2^13, io, 0.2, 1.0)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
test_ka()
|
||||||
|
#@time test_gpu()
|
||||||
Loading…
Reference in new issue