You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							231 lines
						
					
					
						
							6.4 KiB
						
					
					
				
			
		
		
	
	
							231 lines
						
					
					
						
							6.4 KiB
						
					
					
				/*
 | 
						|
 * Test GPU aware MPI on different platforms using a simple
 | 
						|
 * distributed 1d stencil as an example. Gtensor is used so
 | 
						|
 * a single source can be used for all platforms.
 | 
						|
 */
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <mpi.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <time.h>
 | 
						|
 | 
						|
#include "gtensor/gtensor.h"
 | 
						|
#include "gtensor/reductions.h"
 | 
						|
 | 
						|
using namespace gt::placeholders;
 | 
						|
 | 
						|
// little hack to make code parameterizable on managed vs device memory
 | 
						|
namespace gt {
 | 
						|
 | 
						|
namespace ext {
 | 
						|
namespace detail {
 | 
						|
 | 
						|
template <typename T, gt::size_type N, typename S = gt::space::device>
 | 
						|
struct gthelper {
 | 
						|
  using gtensor = gt::gtensor<T, N, S>;
 | 
						|
};
 | 
						|
 | 
						|
#ifdef GTENSOR_HAVE_DEVICE
 | 
						|
 | 
						|
template <typename T, gt::size_type N>
 | 
						|
struct gthelper<T, N, gt::space::managed> {
 | 
						|
  using gtensor = gt::gtensor_container<gt::space::managed_vector<T>, N>;
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
} // namespace detail
 | 
						|
 | 
						|
template <typename T, gt::size_type N, typename S = gt::space::device>
 | 
						|
using gtensor2 = typename detail::gthelper<T, N, S>::gtensor;
 | 
						|
 | 
						|
} // namespace ext
 | 
						|
 | 
						|
} // namespace gt
 | 
						|
 | 
						|
static const gt::gtensor<double, 1> stencil5 = {1.0 / 12.0, -2.0 / 3.0, 0.0,
 | 
						|
                                                2.0 / 3.0, -1.0 / 12.0};
 | 
						|
 | 
						|
/*
 | 
						|
 * Return unevaluated expression that calculates the stencil.
 | 
						|
 *
 | 
						|
 * Size of the result will be size of y minus 4 (the number of boundary points).
 | 
						|
 */
 | 
						|
inline auto stencil1d_5(const gt::gtensor_device<double, 1> &y,
 | 
						|
                        const gt::gtensor<double, 1> &stencil) {
 | 
						|
  return stencil(0) * y.view(_s(0, -4)) + stencil(1) * y.view(_s(1, -3)) +
 | 
						|
         stencil(2) * y.view(_s(2, -2)) + stencil(3) * y.view(_s(3, -1)) +
 | 
						|
         stencil(4) * y.view(_s(4, _));
 | 
						|
}
 | 
						|
 | 
						|
void set_rank_device(int n_ranks, int rank) {
 | 
						|
  int n_devices, device, ranks_per_device;
 | 
						|
 | 
						|
  n_devices = gt::backend::clib::device_get_count();
 | 
						|
 | 
						|
  if (n_ranks > n_devices) {
 | 
						|
    if (n_ranks % n_devices != 0) {
 | 
						|
      printf(
 | 
						|
          "ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n",
 | 
						|
          n_ranks, n_devices);
 | 
						|
      exit(EXIT_FAILURE);
 | 
						|
    }
 | 
						|
    ranks_per_device = n_ranks / n_devices;
 | 
						|
    device = rank / ranks_per_device;
 | 
						|
  } else {
 | 
						|
    ranks_per_device = 1;
 | 
						|
    device = rank;
 | 
						|
  }
 | 
						|
 | 
						|
  gt::backend::clib::device_set(device);
 | 
						|
}
 | 
						|
 | 
						|
void boundary_exchange(MPI_Comm comm, int world_size, int rank,
 | 
						|
                       gt::gtensor_device<double, 1> &d_y, int n_bnd) {
 | 
						|
  double *d_y_data = gt::raw_pointer_cast(d_y.data());
 | 
						|
  double *d_y_data_end = gt::raw_pointer_cast(d_y.data()) + d_y.size();
 | 
						|
 | 
						|
  MPI_Request req_l[2];
 | 
						|
  MPI_Request req_r[2];
 | 
						|
 | 
						|
  int rank_l = rank - 1;
 | 
						|
  int rank_r = rank + 1;
 | 
						|
 | 
						|
  if (rank_l >= 0) {
 | 
						|
    // send/recv left boundary
 | 
						|
    MPI_Irecv(d_y_data, n_bnd, MPI_DOUBLE, rank_l, 123, comm, &req_l[0]);
 | 
						|
    MPI_Isend(d_y_data + n_bnd, n_bnd, MPI_DOUBLE, rank_l, 456, comm,
 | 
						|
              &req_l[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (rank_r < world_size) {
 | 
						|
    // send/recv right boundary
 | 
						|
    MPI_Irecv(d_y_data_end - n_bnd, n_bnd, MPI_DOUBLE, rank_r, 456, comm,
 | 
						|
              &req_r[0]);
 | 
						|
    MPI_Isend(d_y_data_end - 2 * n_bnd, n_bnd, MPI_DOUBLE, rank_r, 123, comm,
 | 
						|
              &req_r[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  int mpi_rval;
 | 
						|
  if (rank_l >= 0) {
 | 
						|
    mpi_rval = MPI_Waitall(2, req_l, MPI_STATUSES_IGNORE);
 | 
						|
    if (mpi_rval != MPI_SUCCESS) {
 | 
						|
      printf("send_l error: %d\n", mpi_rval);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (rank_r < world_size) {
 | 
						|
    mpi_rval = MPI_Waitall(2, req_r, MPI_STATUSES_IGNORE);
 | 
						|
    if (mpi_rval != MPI_SUCCESS) {
 | 
						|
      printf("send_r error: %d\n", mpi_rval);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char **argv) {
 | 
						|
  int n_global = 32 * 1024 * 1024;
 | 
						|
 | 
						|
  if (argc > 1) {
 | 
						|
    n_global = std::atoi(argv[1]) * 1024 * 1024;
 | 
						|
  }
 | 
						|
 | 
						|
  int n_sten = 5;
 | 
						|
  int n_bnd = (n_sten - 1) / 2;
 | 
						|
  int world_size, world_rank, device_id;
 | 
						|
  uint32_t vendor_id;
 | 
						|
 | 
						|
  MPI_Init(NULL, NULL);
 | 
						|
 | 
						|
  MPI_Comm_size(MPI_COMM_WORLD, &world_size);
 | 
						|
  MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 | 
						|
 | 
						|
  if (n_global % world_size != 0) {
 | 
						|
    printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n",
 | 
						|
           world_rank, world_size, n_global);
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
 | 
						|
  const int n_local = n_global / world_size;
 | 
						|
  const int n_local_with_ghost = n_local + 2 * n_bnd;
 | 
						|
 | 
						|
  set_rank_device(world_size, world_rank);
 | 
						|
  device_id = gt::backend::clib::device_get();
 | 
						|
  vendor_id = gt::backend::clib::device_get_vendor_id(device_id);
 | 
						|
 | 
						|
  if (world_rank == 0) {
 | 
						|
    printf("n procs  = %d\n", world_size);
 | 
						|
    printf("n_global = %d\n", n_global);
 | 
						|
    printf("n_local  = %d\n", n_local);
 | 
						|
  }
 | 
						|
 | 
						|
  auto h_y = gt::empty<double>({n_local_with_ghost});
 | 
						|
  auto d_y = gt::empty_device<double>({n_local_with_ghost});
 | 
						|
 | 
						|
  auto h_dydx_numeric = gt::empty<double>({n_local});
 | 
						|
  auto h_dydx_actual = gt::empty<double>({n_local});
 | 
						|
  auto d_dydx_numeric = gt::empty_device<double>({n_local});
 | 
						|
 | 
						|
  double lx = 8;
 | 
						|
  double dx = lx / n_global;
 | 
						|
  double lx_local = lx / world_size;
 | 
						|
  double scale = n_global / lx;
 | 
						|
  auto fn_x_cubed = [](double x) { return x * x * x; };
 | 
						|
  auto fn_x_cubed_deriv = [](double x) { return 3 * x * x; };
 | 
						|
 | 
						|
  struct timespec start, end;
 | 
						|
  double seconds = 0.0;
 | 
						|
 | 
						|
  double x_start = world_rank * lx_local;
 | 
						|
  for (int i = 0; i < n_local; i++) {
 | 
						|
    double xtmp = x_start + i * dx;
 | 
						|
    h_y(i + n_bnd) = fn_x_cubed(xtmp);
 | 
						|
    h_dydx_actual(i) = fn_x_cubed_deriv(xtmp);
 | 
						|
  }
 | 
						|
 | 
						|
  // fill boundary points on ends
 | 
						|
  if (world_rank == 0) {
 | 
						|
    for (int i = 0; i < n_bnd; i++) {
 | 
						|
      double xtmp = (i - n_bnd) * dx;
 | 
						|
      h_y(i) = fn_x_cubed(xtmp);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (world_rank == world_size - 1) {
 | 
						|
    for (int i = 0; i < n_bnd; i++) {
 | 
						|
      double xtmp = lx + i * dx;
 | 
						|
      h_y(n_bnd + n_local + i) = fn_x_cubed(xtmp);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  gt::copy(h_y, d_y);
 | 
						|
 | 
						|
  clock_gettime(CLOCK_MONOTONIC, &start);
 | 
						|
  boundary_exchange(MPI_COMM_WORLD, world_size, world_rank, d_y, n_bnd);
 | 
						|
  clock_gettime(CLOCK_MONOTONIC, &end);
 | 
						|
  seconds = ((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
 | 
						|
  printf("%d/%d exchange time %0.8f\n", world_rank, world_size, seconds);
 | 
						|
 | 
						|
  d_dydx_numeric = stencil1d_5(d_y, stencil5) * scale;
 | 
						|
 | 
						|
  gt::copy(d_dydx_numeric, h_dydx_numeric);
 | 
						|
 | 
						|
  /*
 | 
						|
  for (int i = 0; i < 5; i++) {
 | 
						|
    printf("%d la %f\n%d ln %f\n", world_rank, h_dydx_actual(i),
 | 
						|
           world_rank, h_dydx_numeric(i));
 | 
						|
  }
 | 
						|
  for (int i = 0; i < 5; i++) {
 | 
						|
    int idx = n_local - 1 - i;
 | 
						|
    printf("%d ra %f\n%d rn %f\n", world_rank, h_dydx_actual(idx),
 | 
						|
           world_rank, h_dydx_numeric(idx));
 | 
						|
  }
 | 
						|
  */
 | 
						|
 | 
						|
  double err_norm = std::sqrt(gt::sum_squares(h_dydx_numeric - h_dydx_actual));
 | 
						|
 | 
						|
  printf("%d/%d [%d:0x%08x] err_norm = %.8f\n", world_rank, world_size,
 | 
						|
         device_id, vendor_id, err_norm);
 | 
						|
 | 
						|
  MPI_Finalize();
 | 
						|
 | 
						|
  return EXIT_SUCCESS;
 | 
						|
}
 |