You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

344 lines
9.0 KiB

/*
* ===========================================================================
*
* Filename: mpi_daxpy_nvtx.c
*
* Description: Adds MPI to cublas test, to debug issue on Summit
*
* Version: 1.0
* Created: 05/20/2019 10:33:30 AM
* Revision: none
* Compiler: gcc
*
* Author: YOUR NAME (),
* Organization:
*
* ===========================================================================
*/
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include "cublas_v2.h"
#include "cuda_runtime_api.h"
#include "nvToolsExt.h"
#include "cuda_profiler_api.h"
#define GPU_CHECK_CALLS
#include "cuda_error.h"
// column major
#define IDX2C(i,j,ld) (((j)*(ld))+(i))
//#define BARRIER
static cublasHandle_t handle;
static const int MB = 1024*1024;
void set_rank_device(int n_ranks, int rank) {
int n_devices, device, ranks_per_device;
size_t memory_per_rank;
cudaDeviceProp device_prop;
CHECK("get device count", cudaGetDeviceCount(&n_devices));
if (n_ranks > n_devices) {
if (n_ranks % n_devices != 0) {
printf("ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n",
n_ranks, n_devices);
exit(EXIT_FAILURE);
}
ranks_per_device = n_ranks / n_devices;
device = rank / ranks_per_device;
} else {
ranks_per_device = 1;
device = rank;
}
CHECK("get device props", cudaGetDeviceProperties(&device_prop, device));
memory_per_rank = device_prop.totalGlobalMem / ranks_per_device;
printf("RANK[%d/%d] => DEVICE[%d/%d] mem=%zd\n", rank+1, n_ranks,
device+1, n_devices, memory_per_rank);
CHECK("set device", cudaSetDevice(device));
}
int get_node_count(int n_ranks) {
int shm_size;
MPI_Comm shm_comm;
MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0,
MPI_INFO_NULL, &shm_comm);
MPI_Comm_size(shm_comm, &shm_size);
MPI_Comm_free(&shm_comm);
return n_ranks / shm_size;
}
int main(int argc, char **argv) {
const int n_per_node = 48*MB;
int nodes = 1;
int nall = n_per_node;
int n = 0;
int world_size, world_rank;
size_t free_mem, total_mem;
double a = 2.0;
double sum = 0.0;
double start_time = 0.0;
double end_time = 0.0;
double k_start_time = 0.0;
double k_end_time = 0.0;
double g_start_time = 0.0;
double g_end_time = 0.0;
double b_start_time = 0.0;
double b_end_time = 0.0;
#ifndef MANAGED
double *h_x, *h_y;
double *h_allx, *h_ally;
#endif
double *d_x, *d_y;
double *d_allx, *d_ally;
char *mb_per_core;
MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
nodes = get_node_count(world_size);
// hack: assume max 6 mpi per node, so we use bigger
// arrays on multi-node runs
/*
if (world_size > 6) {
nodes = (world_size + 5) / 6;
}
*/
nall = nodes * n_per_node;
n = nall / world_size;
if (world_rank == 0) {
printf("%d nodes, %d ranks, %d elements each, total %d\n",
nodes, world_size, n, nall);
}
/*
x = (double *)malloc(n*sizeof(*x));
if (x == NULL) {
printf("host malloc(x) failed\n");
return EXIT_FAILURE;
}
y = (double *)malloc(n*sizeof(*y));
if (y == NULL) {
printf("host malloc(y) failed\n");
return EXIT_FAILURE;
}
*/
// DEBUG weirdness on summit where GENE can't see MEMORY_PER_CORE,
// possibly because the system spectrum mpi uses it in some way.
if (world_rank == 0) {
mb_per_core = getenv("MEMORY_PER_CORE");
if (mb_per_core == NULL) {
printf("MEMORY_PER_CORE is not set\n");
} else {
printf("MEMORY_PER_CORE=%s\n", mb_per_core);
}
}
set_rank_device(world_size, world_rank);
//CHECK("setDevice", cudaSetDevice(0));
cudaProfilerStart();
start_time = MPI_Wtime();
CHECK( "cublas", cublasCreate(&handle) );
/*
CHECK( "d_x", cudaMalloc((void**)&d_x, n*sizeof(*d_x)) );
CHECK( "d_y", cudaMalloc((void**)&d_y, n*sizeof(*d_y)) );
*/
nvtxRangePushA("allocateArrays");
#ifdef MANAGED
CHECK( "d_x", cudaMallocManaged((void**)&d_x, n*sizeof(*d_x)) );
CHECK( "d_y", cudaMallocManaged((void**)&d_y, n*sizeof(*d_y)) );
CHECK( "d_allx", cudaMallocManaged((void**)&d_allx,
n*sizeof(*d_allx)*world_size) );
CHECK( "d_ally", cudaMallocManaged((void**)&d_ally,
n*sizeof(*d_ally)*world_size) );
#else
CHECK( "h_x", cudaMallocHost((void**)&h_x, n*sizeof(*h_x)) );
CHECK( "h_y", cudaMallocHost((void**)&h_y, n*sizeof(*h_y)) );
CHECK( "d_x", cudaMalloc((void**)&d_x, n*sizeof(*d_x)) );
CHECK( "d_y", cudaMalloc((void**)&d_y, n*sizeof(*d_y)) );
CHECK( "d_allx", cudaMalloc((void**)&d_allx,
n*sizeof(*d_allx)*world_size) );
CHECK( "d_ally", cudaMalloc((void**)&d_ally,
n*sizeof(*d_ally)*world_size) );
CHECK( "h_allx", cudaMallocHost((void**)&h_allx,
n*sizeof(*h_allx)*world_size) );
CHECK( "h_ally", cudaMallocHost((void**)&h_ally,
n*sizeof(*h_ally)*world_size) );
#endif
nvtxRangePop();
if (world_rank == 0) {
CHECK( "memInfo", cudaMemGetInfo(&free_mem, &total_mem) );
printf("GPU memory %0.3f / %0.3f (%0.3f) MB\n", free_mem/(double)MB,
(double)total_mem/MB, (double)(total_mem-free_mem)/MB);
}
nvtxRangePushA("initializeArrays");
#ifdef MANAGED
for (int i=0; i<n; i++) {
d_x[i] = (i+1)/(double)n;
d_y[i] = -d_x[i];
}
#else
for (int i=0; i<n; i++) {
h_x[i] = (i+1)/(double)n;
h_y[i] = -h_x[i];
}
nvtxRangePushA("copyInput");
CHECK("d_x = h_x",
cudaMemcpy(d_x, h_x, n*sizeof(*h_x), cudaMemcpyHostToDevice) );
CHECK("d_y = h_y",
cudaMemcpy(d_y, h_y, n*sizeof(*h_y), cudaMemcpyHostToDevice) );
nvtxRangePop();
#endif
nvtxRangePop();
//MEMINFO("d_x", d_x, sizeof(d_x));
//MEMINFO("d_y", d_y, sizeof(d_y));
//MEMINFO("x", x, sizeof(x));
//MEMINFO("y", y, sizeof(y));
MEMINFO("d_x", d_x, sizeof(d_x));
MEMINFO("d_y", d_y, sizeof(d_y));
#ifndef MANAGED
MEMINFO("h_x", h_x, sizeof(h_x));
MEMINFO("h_y", h_y, sizeof(h_y));
MEMINFO("h_allx", h_allx, sizeof(h_allx));
MEMINFO("h_ally", h_ally, sizeof(h_ally));
#endif
k_start_time = MPI_Wtime();
nvtxRangePushA("cublasDaxpy");
CHECK("daxpy",
cublasDaxpy(handle, n, &a, d_x, 1, d_y, 1) );
CHECK("daxpy sync", cudaDeviceSynchronize());
nvtxRangePop();
k_end_time = MPI_Wtime();
nvtxRangePushA("localSum");
#ifdef MANAGED
sum = 0.0;
for (int i=0; i<n; i++) {
sum += d_y[i];
}
#else
nvtxRangePushA("copyOutput");
CHECK("h_y = d_y",
cudaMemcpy(h_y, d_y, n*sizeof(*h_y), cudaMemcpyDeviceToHost) );
nvtxRangePop();
sum = 0.0;
for (int i=0; i<n; i++) {
sum += h_y[i];
}
#endif
nvtxRangePop();
printf("%d/%d SUM = %f\n", world_rank, world_size, sum);
nvtxRangePushA("copyPrepAllxInplace");
cudaMemcpy(d_allx+(world_rank*n), d_x, n*sizeof(*d_x), cudaMemcpyDeviceToDevice);
nvtxRangePop();
#ifdef BARRIER
b_start_time = MPI_Wtime();
nvtxRangePushA("mpiBarrier");
MPI_Barrier(MPI_COMM_WORLD);
nvtxRangePop();
b_end_time = MPI_Wtime();
#endif
g_start_time = MPI_Wtime();
nvtxRangePushA("mpiAllGather");
nvtxRangePushA("x");
MPI_Allgather(MPI_IN_PLACE, n, MPI_DOUBLE, d_allx, n, MPI_DOUBLE, MPI_COMM_WORLD);
nvtxRangePop();
nvtxRangePushA("y");
MPI_Allgather(d_y, n, MPI_DOUBLE, d_ally, n, MPI_DOUBLE, MPI_COMM_WORLD);
nvtxRangePop();
nvtxRangePop();
g_end_time = MPI_Wtime();
sum = 0.0;
nvtxRangePushA("allSum");
#ifdef MANAGED
for (int i=0; i<n*world_size; i++) {
sum += d_ally[i];
}
#else
nvtxRangePushA("copyAlly");
CHECK("h_ally = d_ally",
cudaMemcpy(h_ally, d_ally, n*sizeof(*h_ally)*world_size,
cudaMemcpyDeviceToHost) );
nvtxRangePop();
for (int i=0; i<n*world_size; i++) {
sum += h_ally[i];
}
#endif
nvtxRangePop();
printf("%d/%d ALLSUM = %f\n", world_rank, world_size, sum);
// cleanup
nvtxRangePushA("free");
#ifndef MANAGED
cudaFreeHost(h_x);
cudaFreeHost(h_y);
cudaFreeHost(h_allx);
cudaFreeHost(h_ally);
#endif
cudaFree(d_x);
cudaFree(d_y);
cudaFree(d_allx);
cudaFree(d_ally);
nvtxRangePop();
end_time = MPI_Wtime();
cudaProfilerStop();
cublasDestroy(handle);
MPI_Finalize();
printf("%d/%d TIME total : %0.3f\n", world_rank, world_size,
end_time-start_time);
printf("%d/%d TIME kernel : %0.3f\n", world_rank, world_size,
k_end_time-k_start_time);
printf("%d/%d TIME barrier: %0.3f\n", world_rank, world_size,
b_end_time-b_start_time);
printf("%d/%d TIME gather : %0.3f\n", world_rank, world_size,
g_end_time-g_start_time);
return EXIT_SUCCESS;
}