You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
384 lines
12 KiB
384 lines
12 KiB
/*
|
|
* Test GPU aware MPI on different platforms using a distributed
|
|
* 1d stencil on a 2d array. The exchange in second (non-contiguous)
|
|
* direction forces use of staging buffers, which replicates what
|
|
* is needed for all but the innermost dimension exchanges in the
|
|
* GENE fusion code.
|
|
*
|
|
* Takes optional command line arg for size of each dimension of the domain
|
|
* n_global, in 1024 increments. Default is 8 * 1024 (so 256K plus ghost points
|
|
* in size for doulbles per array), which should fit on any system but may not
|
|
* be enough to tax larger HPC GPUs and MPI impelmentations.
|
|
*
|
|
* There will be four exchange buffers of size 2 * n_global, i.e. 128K each
|
|
* by default.
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <mpi.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#include "sycl/sycl.hpp"
|
|
|
|
static constexpr double stencil5[] = {1.0 / 12.0, -2.0 / 3.0, 0.0, 2.0 / 3.0,
|
|
-1.0 / 12.0};
|
|
|
|
constexpr int idx2(int n, int row, int col)
|
|
{
|
|
return row + col * n;
|
|
}
|
|
|
|
/*
|
|
* Calculate 1d stencil of second dimension of 2d array on GPU. Out array must
|
|
* be contiguous column major nrows x ncols array, while in array must be
|
|
* (nrows)x(ncols+4) to accomodate 2 ghost points in each direction for the
|
|
* second dimension.
|
|
*
|
|
* Returns sycl event, async with respect to host.
|
|
*/
|
|
auto stencil2d_1d_5(sycl::queue& q, int nrows, int ncols, double* out2d,
|
|
const double* in2d, double scale)
|
|
{
|
|
// Note: swap index order; SYCL is row-major oriented, and this example
|
|
// is col-major
|
|
auto range = sycl::range<2>(ncols, nrows);
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
int in_idx = idx2(nrows, row, col);
|
|
int stride = ncols + 4;
|
|
out2d[idx2(nrows, row, col)] = (stencil5[0] * in2d[in_idx + 0 * stride] +
|
|
stencil5[1] * in2d[in_idx + 1 * stride] +
|
|
stencil5[2] * in2d[in_idx + 2 * stride] +
|
|
stencil5[3] * in2d[in_idx + 3 * stride] +
|
|
stencil5[4] * in2d[in_idx + 4 * stride]) *
|
|
scale;
|
|
});
|
|
});
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* Copy slice of second (non-contiguous) dimension of in array into contiguous
|
|
* buffer out. In has dimension nrows x ncols, buf has dimension nrows x (end
|
|
* -start + 1).
|
|
*/
|
|
auto buf_from_view(sycl::queue& q, int nrows, double* buf, double* in,
|
|
int start, int end)
|
|
{
|
|
auto range = sycl::range<2>(end - start + 1, nrows);
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
buf[idx2(nrows, row, col)] = in[idx2(nrows, row, start + col)];
|
|
});
|
|
});
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* Copy contiguous buffer into second (non-contiguous) dimension of array as a
|
|
* slice. Out has dimension nrows x ncols, buf has dimension nrows x (end -
|
|
* start + 1).
|
|
*/
|
|
auto buf_to_view(sycl::queue& q, int nrows, double* out, double* buf, int start,
|
|
int end)
|
|
{
|
|
auto range = sycl::range<2>(end - start + 1, nrows);
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
out[idx2(nrows, row, start + col)] = buf[idx2(nrows, row, col)];
|
|
});
|
|
});
|
|
return e;
|
|
}
|
|
|
|
sycl::queue get_rank_queue(int n_ranks, int rank)
|
|
{
|
|
int n_devices, device_idx, ranks_per_device;
|
|
|
|
cl::sycl::platform p{cl::sycl::default_selector()};
|
|
auto devices = p.get_devices();
|
|
n_devices = devices.size();
|
|
|
|
if (n_ranks > n_devices) {
|
|
if (n_ranks % n_devices != 0) {
|
|
printf(
|
|
"ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n",
|
|
n_ranks, n_devices);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
ranks_per_device = n_ranks / n_devices;
|
|
device_idx = rank / ranks_per_device;
|
|
} else {
|
|
ranks_per_device = 1;
|
|
device_idx = rank;
|
|
}
|
|
|
|
return sycl::queue{devices[device_idx],
|
|
cl::sycl::property::queue::in_order()};
|
|
}
|
|
|
|
// exchange in non-contiguous second dimension, staging into contiguous buffers
|
|
// on device
|
|
void boundary_exchange_y(MPI_Comm comm, int world_size, int rank,
|
|
sycl::queue& q, int n_global, int n_local, int n_bnd,
|
|
double* d_z, bool stage_host = false)
|
|
{
|
|
int buf_size = n_global * n_bnd;
|
|
static double* sbuf_l = nullptr;
|
|
static double* sbuf_r = nullptr;
|
|
static double* rbuf_l = nullptr;
|
|
static double* rbuf_r = nullptr;
|
|
|
|
if (sbuf_l == nullptr) {
|
|
sbuf_l = sycl::malloc_device<double>(buf_size, q);
|
|
sbuf_r = sycl::malloc_device<double>(buf_size, q);
|
|
rbuf_l = sycl::malloc_device<double>(buf_size, q);
|
|
rbuf_r = sycl::malloc_device<double>(buf_size, q);
|
|
}
|
|
|
|
static double* h_sbuf_l = nullptr;
|
|
static double* h_sbuf_r = nullptr;
|
|
static double* h_rbuf_l = nullptr;
|
|
static double* h_rbuf_r = nullptr;
|
|
if (stage_host && h_sbuf_l == nullptr) {
|
|
h_sbuf_l = sycl::malloc_host<double>(buf_size, q);
|
|
h_sbuf_r = sycl::malloc_host<double>(buf_size, q);
|
|
h_rbuf_l = sycl::malloc_host<double>(buf_size, q);
|
|
h_rbuf_r = sycl::malloc_host<double>(buf_size, q);
|
|
}
|
|
|
|
MPI_Request req_l[2];
|
|
MPI_Request req_r[2];
|
|
|
|
int rank_l = rank - 1;
|
|
int rank_r = rank + 1;
|
|
|
|
// start async copy of ghost points into send buffers
|
|
if (rank_l >= 0) {
|
|
// sbuf_l = d_z.view(_all, _s(n_bnd, 2 * n_bnd));
|
|
buf_from_view(q, n_global, sbuf_l, d_z, n_bnd, 2 * n_bnd);
|
|
if (stage_host) {
|
|
q.copy(sbuf_l, h_sbuf_l, buf_size);
|
|
}
|
|
}
|
|
if (rank_r <= world_size) {
|
|
// sbuf_r = d_z.view(_all, _s(-2 * n_bnd, -n_bnd));
|
|
buf_from_view(q, n_global, sbuf_l, d_z, n_local, n_local + n_bnd);
|
|
if (stage_host) {
|
|
q.copy(sbuf_r, h_sbuf_r, buf_size);
|
|
}
|
|
}
|
|
|
|
// initiate async recv
|
|
if (rank_l >= 0) {
|
|
double* rbuf_l_data = nullptr;
|
|
if (stage_host) {
|
|
rbuf_l_data = h_rbuf_l;
|
|
} else {
|
|
rbuf_l_data = rbuf_l;
|
|
}
|
|
MPI_Irecv(rbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 123, comm, &req_l[0]);
|
|
}
|
|
|
|
if (rank_r < world_size) {
|
|
double* rbuf_r_data = nullptr;
|
|
if (stage_host) {
|
|
rbuf_r_data = h_rbuf_r;
|
|
} else {
|
|
rbuf_r_data = rbuf_r;
|
|
}
|
|
MPI_Irecv(rbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 456, comm, &req_r[0]);
|
|
}
|
|
|
|
// wait for send buffer fill
|
|
q.wait();
|
|
|
|
// initiate async sends
|
|
if (rank_l >= 0) {
|
|
double* sbuf_l_data = nullptr;
|
|
if (stage_host) {
|
|
sbuf_l_data = h_sbuf_l;
|
|
} else {
|
|
sbuf_l_data = sbuf_l;
|
|
}
|
|
MPI_Isend(sbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 456, comm, &req_l[1]);
|
|
}
|
|
|
|
if (rank_r < world_size) {
|
|
double* sbuf_r_data = nullptr;
|
|
if (stage_host) {
|
|
sbuf_r_data = h_sbuf_r;
|
|
} else {
|
|
sbuf_r_data = sbuf_r;
|
|
}
|
|
MPI_Isend(sbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 123, comm, &req_r[1]);
|
|
}
|
|
|
|
// wait for send/recv to complete, then copy data back into main data array
|
|
int mpi_rval;
|
|
if (rank_l >= 0) {
|
|
mpi_rval = MPI_Waitall(2, req_l, MPI_STATUSES_IGNORE);
|
|
if (mpi_rval != MPI_SUCCESS) {
|
|
printf("send_l error: %d\n", mpi_rval);
|
|
}
|
|
if (stage_host) {
|
|
q.copy(h_rbuf_l, rbuf_l, buf_size);
|
|
}
|
|
// d_z.view(_all, _s(0, n_bnd)) = rbuf_l;
|
|
buf_to_view(q, n_global, d_z, rbuf_l, 0, n_bnd);
|
|
}
|
|
if (rank_r < world_size) {
|
|
mpi_rval = MPI_Waitall(2, req_r, MPI_STATUSES_IGNORE);
|
|
if (mpi_rval != MPI_SUCCESS) {
|
|
printf("send_r error: %d\n", mpi_rval);
|
|
}
|
|
if (stage_host) {
|
|
q.copy(h_rbuf_r, rbuf_r, buf_size);
|
|
}
|
|
// d_z.view(_all, _s(-n_bnd, _)) = rbuf_r;
|
|
buf_to_view(q, n_global, d_z, rbuf_r, n_local + n_bnd, n_local + 2 * n_bnd);
|
|
}
|
|
|
|
q.wait();
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
// Note: domain will be n_global x n_global plus ghost points in one dimension
|
|
int n_global = 8 * 1024;
|
|
bool stage_host = false;
|
|
int n_iter = 100;
|
|
int n_warmup = 5;
|
|
|
|
if (argc > 1) {
|
|
n_global = std::atoi(argv[1]) * 1024;
|
|
}
|
|
if (argc > 2) {
|
|
if (argv[2][0] == '1') {
|
|
stage_host = true;
|
|
}
|
|
}
|
|
if (argc > 3) {
|
|
n_iter = std::atoi(argv[3]);
|
|
}
|
|
|
|
int n_sten = 5;
|
|
int n_bnd = (n_sten - 1) / 2;
|
|
int world_size, world_rank, device_id;
|
|
uint32_t vendor_id;
|
|
|
|
MPI_Init(NULL, NULL);
|
|
|
|
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
|
|
|
|
if (n_global % world_size != 0) {
|
|
printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n",
|
|
world_rank, world_size, n_global);
|
|
exit(1);
|
|
}
|
|
|
|
const int n_local = n_global / world_size;
|
|
const int n_local_with_ghost = n_local + 2 * n_bnd;
|
|
|
|
sycl::queue q = get_rank_queue(world_size, world_rank);
|
|
|
|
if (world_rank == 0) {
|
|
printf("n procs = %d\n", world_size);
|
|
printf("n_global = %d\n", n_global);
|
|
printf("n_local = %d\n", n_local);
|
|
printf("n_iter = %d\n", n_iter);
|
|
printf("n_warmup = %d\n", n_warmup);
|
|
printf("stage_host = %d\n", stage_host);
|
|
}
|
|
|
|
double* h_z = sycl::malloc_host<double>(n_global * n_local_with_ghost, q);
|
|
double* d_z = sycl::malloc_device<double>(n_global * n_local_with_ghost, q);
|
|
|
|
double* h_dzdy_numeric = sycl::malloc_host<double>(n_global * n_local, q);
|
|
double* h_dzdy_actual = sycl::malloc_host<double>(n_global * n_local, q);
|
|
double* d_dzdy_numeric = sycl::malloc_device<double>(n_global * n_local, q);
|
|
|
|
double lx = 8;
|
|
double dx = lx / n_global;
|
|
double lx_local = lx / world_size;
|
|
double scale = n_global / lx;
|
|
auto fn = [](double x, double y) { return x * x + y * y; };
|
|
auto fn_dzdy = [](double x, double y) { return 2 * x; };
|
|
|
|
struct timespec start, end;
|
|
double iter_time = 0.0;
|
|
double total_time = 0.0;
|
|
|
|
double x_start = world_rank * lx_local;
|
|
for (int i = 0; i < n_local; i++) {
|
|
double xtmp = x_start + i * dx;
|
|
for (int j = 0; j < n_global; j++) {
|
|
double ytmp = j * dx;
|
|
h_z[idx2(n_global, j, i + n_bnd)] = fn(xtmp, ytmp);
|
|
h_dzdy_actual[idx2(n_global, j, i)] = fn_dzdy(xtmp, ytmp);
|
|
}
|
|
}
|
|
|
|
// fill boundary points on ends
|
|
if (world_rank == 0) {
|
|
for (int i = 0; i < n_bnd; i++) {
|
|
double xtmp = (i - n_bnd) * dx;
|
|
for (int j = 0; j < n_global; j++) {
|
|
double ytmp = j * dx;
|
|
h_z[idx2(n_global, j, i)] = fn(xtmp, ytmp);
|
|
}
|
|
}
|
|
}
|
|
if (world_rank == world_size - 1) {
|
|
for (int i = 0; i < n_bnd; i++) {
|
|
double xtmp = lx + i * dx;
|
|
for (int j = 0; j < n_global; j++) {
|
|
double ytmp = j * dx;
|
|
h_z[idx2(n_global, j, n_bnd + n_local + i)] = fn(xtmp, ytmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
q.copy(h_z, d_z, n_global * n_local_with_ghost);
|
|
|
|
for (int i = 0; i < n_warmup + n_iter; i++) {
|
|
clock_gettime(CLOCK_MONOTONIC, &start);
|
|
boundary_exchange_y(MPI_COMM_WORLD, world_size, world_rank, q, n_global,
|
|
n_local, n_bnd, d_z, stage_host);
|
|
clock_gettime(CLOCK_MONOTONIC, &end);
|
|
iter_time =
|
|
((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
|
|
|
|
if (i >= n_warmup) {
|
|
total_time += iter_time;
|
|
}
|
|
|
|
// do some calculation, to try to more closely simulate what happens in GENE
|
|
auto e = stencil2d_1d_5(q, n_global, n_local, d_dzdy_numeric, d_z, scale);
|
|
e.wait();
|
|
}
|
|
printf("%d/%d exchange time %0.8f\n", world_rank, world_size,
|
|
total_time / n_iter);
|
|
|
|
q.copy(d_dzdy_numeric, h_dzdy_numeric, n_global * n_local);
|
|
|
|
// double err_norm = std::sqrt(gt::sum_squares(h_dzdy_numeric -
|
|
// h_dzdy_actual));
|
|
|
|
printf("%d/%d [%d:0x%08x] err_norm = %.8f\n", world_rank, world_size,
|
|
device_id, vendor_id, 0.0);
|
|
|
|
MPI_Finalize();
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|