You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
706 lines
21 KiB
706 lines
21 KiB
/*
|
|
* Test GPU aware MPI on different platforms using a distributed
|
|
* 1d stencil on a 2d array. The exchange in second (non-contiguous)
|
|
* direction forces use of staging buffers, which replicates what
|
|
* is needed for all but the innermost dimension exchanges in the
|
|
* GENE fusion code.
|
|
*
|
|
* Takes optional command line arg for size of each dimension of the domain
|
|
* n_global, in 1024 increments. Default is 8 * 1024 (so 256K plus ghost points
|
|
* in size for doulbles per array), which should fit on any system but may not
|
|
* be enough to tax larger HPC GPUs and MPI impelmentations.
|
|
*
|
|
* There will be four exchange buffers of size 2 * n_global, i.e. 128K each
|
|
* by default.
|
|
*
|
|
* Modified version that uses minimal owning (array2d) and non-owning (span2d)
|
|
* classes to make indexing handling less error prone, without using all of
|
|
* gtensor. Note that the owning class is not trivially copyable and not device
|
|
* copyable, because it must have a non-trivial destructor.
|
|
*
|
|
* TODO: Since no temporaries are used, perhaps a helper that allocates and
|
|
* returns a span is a simpler option to create this minimal example?
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <mpi.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <type_traits>
|
|
|
|
#include "sycl/sycl.hpp"
|
|
|
|
// #define DEBUG
|
|
|
|
#ifdef DEBUG
|
|
#define dprintf(...) fprintf(stderr, __VA_ARGS__)
|
|
#else
|
|
#define dprintf(...) \
|
|
do { \
|
|
} while (0)
|
|
#endif
|
|
|
|
constexpr std::size_t idx2(int n, int row, int col)
|
|
{
|
|
return row + col * n;
|
|
}
|
|
|
|
template <typename T, sycl::usm::alloc Alloc>
|
|
class span2d
|
|
{
|
|
public:
|
|
using value_type = T;
|
|
using pointer = value_type*;
|
|
using const_pointer = const value_type*;
|
|
using reference = value_type&;
|
|
using const_reference = const value_type&;
|
|
using size_type = std::size_t;
|
|
|
|
span2d(T* data, const int nrows, const int ncols)
|
|
: data_(data), nrows_(nrows), ncols_(ncols)
|
|
{}
|
|
|
|
// use default copy and move ctor. Ideall move ctor would better invalidate
|
|
// the moved from object, but this is supposed to be a small example...
|
|
span2d(const span2d& other) = default;
|
|
span2d& operator=(const span2d& other) = default;
|
|
span2d(span2d&& other) = default;
|
|
span2d& operator=(span2d&& other) = default;
|
|
|
|
// Note: shallow const
|
|
reference operator()(int row, int col) const
|
|
{
|
|
assert(row < nrows_);
|
|
assert(col < ncols_);
|
|
return data_[idx2(nrows_, row, col)];
|
|
}
|
|
|
|
// Note: shallow const
|
|
reference operator[](size_type i) const
|
|
{
|
|
assert(i < (nrows_ * ncols_));
|
|
return data_[i];
|
|
}
|
|
|
|
int nrows() const { return nrows_; }
|
|
int ncols() const { return ncols_; }
|
|
size_type size() const { return nrows_ * ncols_; }
|
|
|
|
span2d to_span() { return *this; }
|
|
|
|
// Note: shallow const
|
|
pointer data() const { return data_; }
|
|
|
|
private:
|
|
const sycl::usm::alloc alloc_ = Alloc;
|
|
T* data_;
|
|
const int nrows_;
|
|
const int ncols_;
|
|
};
|
|
|
|
template <typename T>
|
|
auto empty_host(sycl::queue& q, int nrows, int ncols)
|
|
{
|
|
T* data = sycl::malloc(nrows * ncols, q, sycl::usm::alloc::host);
|
|
return span2d<T, sycl::usm::alloc::host>(data, nrows, ncols);
|
|
}
|
|
|
|
template <typename T>
|
|
auto empty_device(sycl::queue& q, int nrows, int ncols)
|
|
{
|
|
T* data = sycl::malloc(nrows * ncols, q, sycl::usm::alloc::device);
|
|
return span2d<T, sycl::usm::alloc::device>(data, nrows, ncols);
|
|
}
|
|
|
|
template <typename T, sycl::usm::alloc Alloc>
|
|
class array2d : public span2d<T, Alloc>
|
|
{
|
|
public:
|
|
using base_type = span2d<T, Alloc>;
|
|
using value_type = T;
|
|
using pointer = value_type*;
|
|
using const_pointer = const value_type*;
|
|
using reference = value_type&;
|
|
using const_reference = const value_type&;
|
|
using size_type = std::size_t;
|
|
|
|
array2d(sycl::queue& q, const int nrows, const int ncols)
|
|
: base_type(sycl::malloc<value_type>(nrows * ncols, q, Alloc), nrows,
|
|
ncols),
|
|
q_(q)
|
|
{}
|
|
|
|
// Results in a double free, why?
|
|
// ~array2d() { sycl::free(this->data(), q_); }
|
|
|
|
// skip these to keep the example simple, pass by reference everywhere
|
|
array2d(const array2d& other) = delete;
|
|
array2d& operator=(const array2d& other) = delete;
|
|
array2d(array2d&& other) = delete;
|
|
array2d& operator=(array2d&& other) = delete;
|
|
|
|
base_type to_span()
|
|
{
|
|
return base_type(this->data(), this->nrows(), this->ncols());
|
|
}
|
|
|
|
private:
|
|
sycl::queue& q_;
|
|
};
|
|
|
|
template <typename SrcArray, typename DestArray>
|
|
auto copy(sycl::queue& q, SrcArray& src, DestArray& dest)
|
|
{
|
|
static_assert(std::is_same_v<typename SrcArray::value_type,
|
|
typename DestArray::value_type>,
|
|
"value types must match");
|
|
assert(src.size() == dest.size());
|
|
return q.copy(src.data(), dest.data(), dest.size());
|
|
}
|
|
|
|
template <typename Array>
|
|
auto copy_dest_slice(sycl::queue& q, Array& src, Array& dest, int dim,
|
|
int start, int end)
|
|
{
|
|
dprintf("copy dest_slice %d %d %d\n", dim, start, end);
|
|
auto s_src = src.to_span();
|
|
auto s_dest = dest.to_span();
|
|
assert(dim == 0 || dim == 1);
|
|
if (dim == 0) {
|
|
assert(src.ncols() == dest.ncols());
|
|
if (start < 0) {
|
|
start += dest.nrows();
|
|
}
|
|
if (end < 0) {
|
|
end += dest.nrows();
|
|
} else if (end == 0 && start > end) {
|
|
end = dest.nrows();
|
|
}
|
|
assert(start < end);
|
|
auto range = sycl::range<2>(dest.ncols(), end - start);
|
|
dprintf("d_z < buf range %d - %d (%d, %d)\n", start, end, dest.ncols(),
|
|
end - start);
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
s_dest(start + row, col) = s_src(row, col);
|
|
});
|
|
});
|
|
return e;
|
|
} else {
|
|
assert(src.nrows() == dest.nrows());
|
|
if (start < 0) {
|
|
start += dest.ncols();
|
|
}
|
|
if (end < 0) {
|
|
end += dest.ncols();
|
|
} else if (end == 0 && start > end) {
|
|
end = dest.ncols();
|
|
}
|
|
auto range = sycl::range<2>(end - start, dest.nrows());
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
s_dest(row, start + col) = s_src(row, col);
|
|
});
|
|
});
|
|
return e;
|
|
}
|
|
}
|
|
|
|
template <typename Array>
|
|
auto copy_src_slice(sycl::queue& q, Array& src, Array& dest, int dim, int start,
|
|
int end)
|
|
{
|
|
dprintf("copy src_slice %d %d %d (%d, %d) -> (%d, %d)\n", dim, start, end,
|
|
src.nrows(), src.ncols(), dest.nrows(), dest.ncols());
|
|
assert(dim == 0 || dim == 1);
|
|
auto s_src = src.to_span();
|
|
auto s_dest = dest.to_span();
|
|
if (dim == 0) {
|
|
assert(src.ncols() == dest.ncols());
|
|
if (start < 0) {
|
|
start += src.nrows();
|
|
}
|
|
if (end < 0) {
|
|
end += src.nrows();
|
|
} else if (end == 0 && start > end) {
|
|
end = src.nrows();
|
|
}
|
|
auto range = sycl::range<2>(dest.ncols(), end - start);
|
|
dprintf("buf < d_z range %d - %d (%d, %d)\n", start, end, dest.ncols(),
|
|
end - start);
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
s_dest(row, col) = s_src(start + row, col);
|
|
});
|
|
});
|
|
return e;
|
|
} else {
|
|
assert(src.nrows() == dest.nrows());
|
|
if (start < 0) {
|
|
start += src.ncols();
|
|
}
|
|
if (end < 0) {
|
|
end += src.ncols();
|
|
} else if (end == 0 && start > end) {
|
|
end = src.ncols();
|
|
}
|
|
auto range = sycl::range<2>(end - start, dest.nrows());
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
s_dest(row, col) = s_src(row, start + col);
|
|
});
|
|
});
|
|
return e;
|
|
}
|
|
}
|
|
|
|
inline void check(const char* fname, int line, int mpi_rval)
|
|
{
|
|
if (mpi_rval != MPI_SUCCESS) {
|
|
printf("%s:%d error %d\n", fname, line, mpi_rval);
|
|
exit(2);
|
|
}
|
|
}
|
|
|
|
#define CHECK(x) check(__FILE__, __LINE__, (x))
|
|
|
|
static constexpr double stencil5[] = {1.0 / 12.0, -2.0 / 3.0, 0.0, 2.0 / 3.0,
|
|
-1.0 / 12.0};
|
|
|
|
/*
|
|
* Calculate 1d stencil of second dimension of 2d array on GPU. Out array must
|
|
* be contiguous column major nrows x ncols array, while in array must be
|
|
* (nrows)x(ncols+4) to accomodate 2 ghost points in each direction for the
|
|
* second dimension.
|
|
*
|
|
* Returns sycl event, async with respect to host.
|
|
*/
|
|
template <typename Array>
|
|
auto stencil2d_1d_5(sycl::queue& q, Array& out2d, Array& in2d, double scale)
|
|
{
|
|
// Note: swap index order; SYCL is row-major oriented, and this example
|
|
// is col-major
|
|
auto range = sycl::range<2>(out2d.ncols(), out2d.nrows());
|
|
auto s_in2d = in2d.to_span();
|
|
auto s_out2d = out2d.to_span();
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
cgh.parallel_for(range, [=](sycl::item<2> item) {
|
|
int row = item.get_id(1);
|
|
int col = item.get_id(0);
|
|
s_out2d(row, col) = (stencil5[0] * s_in2d(row + 0, col) +
|
|
stencil5[1] * s_in2d(row + 1, col) +
|
|
stencil5[2] * s_in2d(row + 2, col) +
|
|
stencil5[3] * s_in2d(row + 3, col) +
|
|
stencil5[4] * s_in2d(row + 4, col)) *
|
|
scale;
|
|
});
|
|
});
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* Calculate the norm of the difference of two arrays, as sqrt of sum of
|
|
* squared distances.
|
|
*/
|
|
double diff_norm(sycl::queue& q, std::size_t size, double* d_a, double* d_b)
|
|
{
|
|
double result = 0.0;
|
|
sycl::buffer<double> result_buf{&result, 1};
|
|
{
|
|
sycl::range<1> range(size);
|
|
auto e = q.submit([&](sycl::handler& cgh) {
|
|
auto reducer = sycl::reduction(result_buf, cgh, 0.0, std::plus<>{});
|
|
cgh.parallel_for(range, reducer, [=](sycl::id<1> idx, auto& r) {
|
|
double diff = d_a[idx] - d_b[idx];
|
|
r.combine(diff * diff);
|
|
});
|
|
});
|
|
e.wait();
|
|
}
|
|
return std::sqrt(result_buf.get_host_access()[0]);
|
|
}
|
|
|
|
sycl::queue get_rank_queue(int n_ranks, int rank)
|
|
{
|
|
int n_devices, device_idx, ranks_per_device;
|
|
|
|
sycl::context ctx{};
|
|
auto devices = ctx.get_devices();
|
|
n_devices = devices.size();
|
|
|
|
if (n_ranks > n_devices) {
|
|
if (n_ranks % n_devices != 0) {
|
|
printf(
|
|
"ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n",
|
|
n_ranks, n_devices);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
ranks_per_device = n_ranks / n_devices;
|
|
device_idx = rank / ranks_per_device;
|
|
} else {
|
|
ranks_per_device = 1;
|
|
device_idx = rank;
|
|
}
|
|
|
|
dprintf("%d: n_devices = %d\n", rank, n_devices);
|
|
dprintf("%d: device_idx = %d\n", rank, device_idx);
|
|
|
|
return sycl::queue{devices[device_idx], sycl::property::queue::in_order()};
|
|
}
|
|
|
|
// exchange in first dimension, staging into contiguous buffers on device
|
|
template <typename T, sycl::usm::alloc Alloc>
|
|
void boundary_exchange_x(MPI_Comm comm, int world_size, int rank,
|
|
sycl::queue& q, int n_bnd, array2d<T, Alloc>& d_z,
|
|
bool stage_host = false)
|
|
{
|
|
static array2d<double, sycl::usm::alloc::device> sbuf_l{q, n_bnd,
|
|
d_z.ncols()};
|
|
static array2d<double, sycl::usm::alloc::device> sbuf_r{q, n_bnd,
|
|
d_z.ncols()};
|
|
static array2d<double, sycl::usm::alloc::device> rbuf_l{q, n_bnd,
|
|
d_z.ncols()};
|
|
static array2d<double, sycl::usm::alloc::device> rbuf_r{q, n_bnd,
|
|
d_z.ncols()};
|
|
|
|
static array2d<double, sycl::usm::alloc::host> h_sbuf_l{q, n_bnd,
|
|
d_z.ncols()};
|
|
static array2d<double, sycl::usm::alloc::host> h_sbuf_r{q, n_bnd,
|
|
d_z.ncols()};
|
|
static array2d<double, sycl::usm::alloc::host> h_rbuf_l{q, n_bnd,
|
|
d_z.ncols()};
|
|
static array2d<double, sycl::usm::alloc::host> h_rbuf_r{q, n_bnd,
|
|
d_z.ncols()};
|
|
|
|
int buf_size = sbuf_l.size();
|
|
|
|
MPI_Request req_l[2];
|
|
MPI_Request req_r[2];
|
|
|
|
int rank_l = rank - 1;
|
|
int rank_r = rank + 1;
|
|
|
|
// start async copy of ghost points into send buffers
|
|
if (rank_l >= 0) {
|
|
dprintf("%d: rank_l = %d\n", rank, rank_l);
|
|
fflush(nullptr);
|
|
// sbuf_l = d_z.view(_all, _s(n_bnd, 2 * n_bnd));
|
|
auto e = copy_src_slice(q, d_z, sbuf_l, 0, n_bnd, 2 * n_bnd);
|
|
if (stage_host) {
|
|
e.wait();
|
|
copy(q, sbuf_l, h_sbuf_l).wait();
|
|
for (int i = 0; i < h_sbuf_l.ncols(); i++) {
|
|
for (int j = 0; j < h_sbuf_l.nrows(); j++) {
|
|
dprintf("%d: sbuf_l[%d, %d] = %f\n", rank, j, i, h_sbuf_l(j, i));
|
|
fflush(nullptr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (rank_r < world_size) {
|
|
dprintf("%d: rank_r = %d\n", rank, rank_r);
|
|
fflush(nullptr);
|
|
// sbuf_r = d_z.view(_all, _s(-2 * n_bnd, -n_bnd));
|
|
auto e = copy_src_slice(q, d_z, sbuf_r, 0, -2 * n_bnd, -n_bnd);
|
|
if (stage_host) {
|
|
e.wait();
|
|
copy(q, sbuf_r, h_sbuf_r).wait();
|
|
for (int i = 0; i < h_sbuf_r.ncols(); i++) {
|
|
for (int j = 0; j < h_sbuf_r.nrows(); j++) {
|
|
dprintf("%d: sbuf_r[%d, %d] = %f\n", rank, j, i, h_sbuf_r(j, i));
|
|
fflush(nullptr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// initiate async recv
|
|
if (rank_l >= 0) {
|
|
double* rbuf_l_data = nullptr;
|
|
if (stage_host) {
|
|
rbuf_l_data = h_rbuf_l.data();
|
|
} else {
|
|
rbuf_l_data = rbuf_l.data();
|
|
}
|
|
MPI_Irecv(rbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 123, comm, &req_l[0]);
|
|
}
|
|
|
|
if (rank_r < world_size) {
|
|
double* rbuf_r_data = nullptr;
|
|
if (stage_host) {
|
|
rbuf_r_data = h_rbuf_r.data();
|
|
} else {
|
|
rbuf_r_data = rbuf_r.data();
|
|
}
|
|
MPI_Irecv(rbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 456, comm, &req_r[0]);
|
|
}
|
|
|
|
// wait for send buffer fill
|
|
q.wait();
|
|
|
|
// initiate async sends
|
|
if (rank_l >= 0) {
|
|
double* sbuf_l_data = nullptr;
|
|
if (stage_host) {
|
|
sbuf_l_data = h_sbuf_l.data();
|
|
} else {
|
|
sbuf_l_data = sbuf_l.data();
|
|
}
|
|
MPI_Isend(sbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 456, comm, &req_l[1]);
|
|
}
|
|
|
|
if (rank_r < world_size) {
|
|
double* sbuf_r_data = nullptr;
|
|
if (stage_host) {
|
|
sbuf_r_data = h_sbuf_r.data();
|
|
} else {
|
|
sbuf_r_data = sbuf_r.data();
|
|
}
|
|
MPI_Isend(sbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 123, comm, &req_r[1]);
|
|
}
|
|
|
|
// wait for send/recv to complete, then copy data back into main data array
|
|
int mpi_rval;
|
|
if (rank_l >= 0) {
|
|
mpi_rval = MPI_Waitall(2, req_l, MPI_STATUSES_IGNORE);
|
|
if (mpi_rval != MPI_SUCCESS) {
|
|
printf("%d: send_l error: %d\n", rank, mpi_rval);
|
|
}
|
|
if (stage_host) {
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < h_rbuf_l.ncols(); i++) {
|
|
for (int j = 0; j < h_rbuf_l.nrows(); j++) {
|
|
dprintf("%d: rbuf_l[%d, %d] = %f\n", rank, j, i, h_rbuf_l(j, i));
|
|
fflush(nullptr);
|
|
}
|
|
}
|
|
#endif
|
|
copy(q, h_rbuf_l, rbuf_l).wait();
|
|
}
|
|
// d_z.view(_all, _s(0, n_bnd)) = rbuf_l;
|
|
copy_dest_slice(q, rbuf_l, d_z, 0, 0, n_bnd);
|
|
}
|
|
if (rank_r < world_size) {
|
|
mpi_rval = MPI_Waitall(2, req_r, MPI_STATUSES_IGNORE);
|
|
if (mpi_rval != MPI_SUCCESS) {
|
|
printf("%d: send_r error: %d\n", rank, mpi_rval);
|
|
}
|
|
if (stage_host) {
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < h_rbuf_r.ncols(); i++) {
|
|
for (int j = 0; j < h_rbuf_r.nrows(); j++) {
|
|
dprintf("%d: rbuf_r[%d, %d] = %f\n", rank, j, i, h_rbuf_r(j, i));
|
|
fflush(nullptr);
|
|
}
|
|
}
|
|
#endif
|
|
copy(q, h_rbuf_r, rbuf_r).wait();
|
|
}
|
|
// d_z.view(_all, _s(-n_bnd, _)) = rbuf_r;
|
|
copy_dest_slice(q, rbuf_r, d_z, 0, -n_bnd, 0);
|
|
}
|
|
|
|
q.wait();
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
using T = double;
|
|
|
|
static_assert(
|
|
std::is_trivially_copyable_v<span2d<T, sycl::usm::alloc::device>>,
|
|
"span2d device not trivial");
|
|
static_assert(std::is_trivially_copyable_v<span2d<T, sycl::usm::alloc::host>>,
|
|
"span2d host not trivial");
|
|
|
|
// Note: domain will be n_global x n_global plus ghost points in one dimension
|
|
int n_global = 8 * 1024;
|
|
bool stage_host = false;
|
|
int n_iter = 100;
|
|
int n_warmup = 5;
|
|
|
|
if (argc > 1) {
|
|
n_global = std::atoi(argv[1]) * 1024;
|
|
}
|
|
if (argc > 2) {
|
|
if (argv[2][0] == '1') {
|
|
stage_host = true;
|
|
}
|
|
}
|
|
if (argc > 3) {
|
|
n_iter = std::atoi(argv[3]);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
n_global /= 1024;
|
|
n_iter = 1;
|
|
n_warmup = 0;
|
|
#endif
|
|
|
|
int n_sten = 5;
|
|
int n_bnd = (n_sten - 1) / 2;
|
|
int world_size, world_rank, device_id;
|
|
uint32_t vendor_id;
|
|
|
|
MPI_Init(NULL, NULL);
|
|
|
|
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
|
|
|
|
if (n_global % world_size != 0) {
|
|
printf("%d: nmpi (%d) must be divisor of domain size (%d), exiting\n",
|
|
world_rank, world_size, n_global);
|
|
exit(1);
|
|
}
|
|
|
|
const int n_local = n_global / world_size;
|
|
const int n_local_with_ghost = n_local + 2 * n_bnd;
|
|
|
|
sycl::queue q = get_rank_queue(world_size, world_rank);
|
|
|
|
vendor_id = q.get_device().get_info<sycl::info::device::vendor_id>();
|
|
|
|
if (world_rank == 0) {
|
|
printf("n procs = %d\n", world_size);
|
|
printf("rank = %d\n", world_rank);
|
|
printf("n_global = %d\n", n_global);
|
|
printf("n_local = %d\n", n_local);
|
|
printf("n_iter = %d\n", n_iter);
|
|
printf("n_warmup = %d\n", n_warmup);
|
|
printf("stage_host = %d\n", stage_host);
|
|
}
|
|
|
|
int z_size = n_local_with_ghost * n_global;
|
|
int dzdx_size = n_local * n_global;
|
|
|
|
array2d<T, sycl::usm::alloc::host> h_z{q, n_local_with_ghost, n_global};
|
|
array2d<T, sycl::usm::alloc::device> d_z{q, n_local_with_ghost, n_global};
|
|
|
|
array2d<T, sycl::usm::alloc::host> h_dzdx_actual{q, n_local, n_global};
|
|
array2d<T, sycl::usm::alloc::host> h_dzdx_numeric{q, n_local, n_global};
|
|
array2d<T, sycl::usm::alloc::device> d_dzdx_actual{q, n_local, n_global};
|
|
array2d<T, sycl::usm::alloc::device> d_dzdx_numeric{q, n_local, n_global};
|
|
|
|
double lx = 8;
|
|
double dx = lx / n_global;
|
|
double lx_local = lx / world_size;
|
|
double scale = n_global / lx;
|
|
auto fn = [](double x, double y) { return x * x * x + y * y; };
|
|
auto fn_dzdx = [](double x, double y) { return 3 * x * x; };
|
|
|
|
struct timespec start, end;
|
|
double iter_time = 0.0;
|
|
double total_time = 0.0;
|
|
|
|
double x_start = world_rank * lx_local;
|
|
for (int j = 0; j < h_z.ncols(); j++) {
|
|
double ytmp = j * dx;
|
|
for (int i = 0; i < n_local; i++) {
|
|
double xtmp = x_start + i * dx;
|
|
h_z(i + n_bnd, j) = fn(xtmp, ytmp);
|
|
h_dzdx_actual(i, j) = fn_dzdx(xtmp, ytmp);
|
|
}
|
|
}
|
|
|
|
// fill boundary points on ends
|
|
if (world_rank == 0) {
|
|
for (int j = 0; j < h_z.ncols(); j++) {
|
|
double ytmp = j * dx;
|
|
for (int i = 0; i < n_bnd; i++) {
|
|
double xtmp = (i - n_bnd) * dx;
|
|
h_z(i, j) = fn(xtmp, ytmp);
|
|
}
|
|
}
|
|
}
|
|
if (world_rank == world_size - 1) {
|
|
for (int j = 0; j < h_z.ncols(); j++) {
|
|
double ytmp = j * dx;
|
|
for (int i = 0; i < n_bnd; i++) {
|
|
double xtmp = lx + i * dx;
|
|
h_z(n_bnd + n_local + i, j) = fn(xtmp, ytmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
for (int r = 0; r < world_size; r++) {
|
|
if (r != world_rank) {
|
|
continue;
|
|
}
|
|
|
|
for (int i = n_bnd; i < 2 * n_bnd; i++) {
|
|
dprintf("%d: [%d, :]", world_rank, i);
|
|
for (int j = 0; j < std::min(20, h_z.ncols()); j++) {
|
|
dprintf(" %f", h_z(i, j));
|
|
}
|
|
dprintf("\n");
|
|
}
|
|
for (int i = h_z.nrows() - 2 * n_bnd; i < h_z.nrows() - n_bnd; i++) {
|
|
dprintf("%d: [%d, :]", world_rank, i);
|
|
for (int j = 0; j < std::min(20, h_z.ncols()); j++) {
|
|
dprintf(" %f", h_z(i, j));
|
|
}
|
|
dprintf("\n");
|
|
}
|
|
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
}
|
|
#endif
|
|
|
|
copy(q, h_z, d_z);
|
|
|
|
for (int i = 0; i < n_warmup + n_iter; i++) {
|
|
clock_gettime(CLOCK_MONOTONIC, &start);
|
|
boundary_exchange_x(MPI_COMM_WORLD, world_size, world_rank, q, n_bnd, d_z,
|
|
stage_host);
|
|
clock_gettime(CLOCK_MONOTONIC, &end);
|
|
iter_time =
|
|
((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
|
|
|
|
if (i >= n_warmup) {
|
|
total_time += iter_time;
|
|
}
|
|
|
|
// do some calculation, to try to more closely simulate what happens in GENE
|
|
auto e = stencil2d_1d_5(q, d_dzdx_numeric, d_z, scale);
|
|
e.wait();
|
|
}
|
|
printf("%d: exchange time %0.8f ms\n", world_rank,
|
|
total_time / n_iter * 1000);
|
|
|
|
copy(q, d_dzdx_numeric, h_dzdx_numeric).wait();
|
|
|
|
/*
|
|
for (int i = 0; i < 5; i++) {
|
|
int idx = idx2(n_global, 8, i);
|
|
printf("%d la %f\n%d ln %f\n", world_rank, h_dzdx_actual[idx], world_rank,
|
|
h_dzdx_numeric[idx]);
|
|
}
|
|
for (int i = 0; i < 5; i++) {
|
|
int idx = idx2(n_global, 8, n_local - 1 - i);
|
|
printf("%d ra %f\n%d rn %f\n", world_rank, h_dzdx_actual[idx], world_rank,
|
|
h_dzdx_numeric[idx]);
|
|
}
|
|
*/
|
|
|
|
double err_norm = diff_norm(q, h_dzdx_numeric.size(), h_dzdx_numeric.data(),
|
|
h_dzdx_actual.data());
|
|
|
|
printf("%d: [0x%08x] err_norm = %.8f\n", world_rank, vendor_id, err_norm);
|
|
|
|
MPI_Finalize();
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|