You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							706 lines
						
					
					
						
							21 KiB
						
					
					
				
			
		
		
	
	
							706 lines
						
					
					
						
							21 KiB
						
					
					
				/*
 | 
						|
 * Test GPU aware MPI on different platforms using a distributed
 | 
						|
 * 1d stencil on a 2d array. The exchange in second (non-contiguous)
 | 
						|
 * direction forces use of staging buffers, which replicates what
 | 
						|
 * is needed for all but the innermost dimension exchanges in the
 | 
						|
 * GENE fusion code.
 | 
						|
 *
 | 
						|
 * Takes optional command line arg for size of each dimension of the domain
 | 
						|
 * n_global, in 1024 increments. Default is 8 * 1024 (so 256K plus ghost points
 | 
						|
 * in size for doulbles per array), which should fit on any system but may not
 | 
						|
 * be enough to tax larger HPC GPUs and MPI impelmentations.
 | 
						|
 *
 | 
						|
 * There will be four exchange buffers of size 2 * n_global, i.e. 128K each
 | 
						|
 * by default.
 | 
						|
 *
 | 
						|
 * Modified version that uses minimal owning (array2d) and non-owning (span2d)
 | 
						|
 * classes to make indexing handling less error prone, without using all of
 | 
						|
 * gtensor. Note that the owning class is not trivially copyable and not device
 | 
						|
 * copyable, because it must have a non-trivial destructor.
 | 
						|
 *
 | 
						|
 * TODO: Since no temporaries are used, perhaps a helper that allocates and
 | 
						|
 * returns a span is a simpler option to create this minimal example?
 | 
						|
 */
 | 
						|
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
#include <memory>
 | 
						|
#include <mpi.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <time.h>
 | 
						|
#include <type_traits>
 | 
						|
 | 
						|
#include "sycl/sycl.hpp"
 | 
						|
 | 
						|
// #define DEBUG
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#define dprintf(...) fprintf(stderr, __VA_ARGS__)
 | 
						|
#else
 | 
						|
#define dprintf(...)                                                           \
 | 
						|
  do {                                                                         \
 | 
						|
  } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
constexpr std::size_t idx2(int n, int row, int col)
 | 
						|
{
 | 
						|
  return row + col * n;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, sycl::usm::alloc Alloc>
 | 
						|
class span2d
 | 
						|
{
 | 
						|
public:
 | 
						|
  using value_type = T;
 | 
						|
  using pointer = value_type*;
 | 
						|
  using const_pointer = const value_type*;
 | 
						|
  using reference = value_type&;
 | 
						|
  using const_reference = const value_type&;
 | 
						|
  using size_type = std::size_t;
 | 
						|
 | 
						|
  span2d(T* data, const int nrows, const int ncols)
 | 
						|
    : data_(data), nrows_(nrows), ncols_(ncols)
 | 
						|
  {}
 | 
						|
 | 
						|
  // use default copy and move ctor. Ideall move ctor would better invalidate
 | 
						|
  // the moved from object, but this is supposed to be a small example...
 | 
						|
  span2d(const span2d& other) = default;
 | 
						|
  span2d& operator=(const span2d& other) = default;
 | 
						|
  span2d(span2d&& other) = default;
 | 
						|
  span2d& operator=(span2d&& other) = default;
 | 
						|
 | 
						|
  // Note: shallow const
 | 
						|
  reference operator()(int row, int col) const
 | 
						|
  {
 | 
						|
    assert(row < nrows_);
 | 
						|
    assert(col < ncols_);
 | 
						|
    return data_[idx2(nrows_, row, col)];
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: shallow const
 | 
						|
  reference operator[](size_type i) const
 | 
						|
  {
 | 
						|
    assert(i < (nrows_ * ncols_));
 | 
						|
    return data_[i];
 | 
						|
  }
 | 
						|
 | 
						|
  int nrows() const { return nrows_; }
 | 
						|
  int ncols() const { return ncols_; }
 | 
						|
  size_type size() const { return nrows_ * ncols_; }
 | 
						|
 | 
						|
  span2d to_span() { return *this; }
 | 
						|
 | 
						|
  // Note: shallow const
 | 
						|
  pointer data() const { return data_; }
 | 
						|
 | 
						|
private:
 | 
						|
  const sycl::usm::alloc alloc_ = Alloc;
 | 
						|
  T* data_;
 | 
						|
  const int nrows_;
 | 
						|
  const int ncols_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
auto empty_host(sycl::queue& q, int nrows, int ncols)
 | 
						|
{
 | 
						|
  T* data = sycl::malloc(nrows * ncols, q, sycl::usm::alloc::host);
 | 
						|
  return span2d<T, sycl::usm::alloc::host>(data, nrows, ncols);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
auto empty_device(sycl::queue& q, int nrows, int ncols)
 | 
						|
{
 | 
						|
  T* data = sycl::malloc(nrows * ncols, q, sycl::usm::alloc::device);
 | 
						|
  return span2d<T, sycl::usm::alloc::device>(data, nrows, ncols);
 | 
						|
}
 | 
						|
 | 
						|
template <typename T, sycl::usm::alloc Alloc>
 | 
						|
class array2d : public span2d<T, Alloc>
 | 
						|
{
 | 
						|
public:
 | 
						|
  using base_type = span2d<T, Alloc>;
 | 
						|
  using value_type = T;
 | 
						|
  using pointer = value_type*;
 | 
						|
  using const_pointer = const value_type*;
 | 
						|
  using reference = value_type&;
 | 
						|
  using const_reference = const value_type&;
 | 
						|
  using size_type = std::size_t;
 | 
						|
 | 
						|
  array2d(sycl::queue& q, const int nrows, const int ncols)
 | 
						|
    : base_type(sycl::malloc<value_type>(nrows * ncols, q, Alloc), nrows,
 | 
						|
                ncols),
 | 
						|
      q_(q)
 | 
						|
  {}
 | 
						|
 | 
						|
  // Results in a double free, why?
 | 
						|
  // ~array2d() { sycl::free(this->data(), q_); }
 | 
						|
 | 
						|
  // skip these to keep the example simple, pass by reference everywhere
 | 
						|
  array2d(const array2d& other) = delete;
 | 
						|
  array2d& operator=(const array2d& other) = delete;
 | 
						|
  array2d(array2d&& other) = delete;
 | 
						|
  array2d& operator=(array2d&& other) = delete;
 | 
						|
 | 
						|
  base_type to_span()
 | 
						|
  {
 | 
						|
    return base_type(this->data(), this->nrows(), this->ncols());
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  sycl::queue& q_;
 | 
						|
};
 | 
						|
 | 
						|
template <typename SrcArray, typename DestArray>
 | 
						|
auto copy(sycl::queue& q, SrcArray& src, DestArray& dest)
 | 
						|
{
 | 
						|
  static_assert(std::is_same_v<typename SrcArray::value_type,
 | 
						|
                               typename DestArray::value_type>,
 | 
						|
                "value types must match");
 | 
						|
  assert(src.size() == dest.size());
 | 
						|
  return q.copy(src.data(), dest.data(), dest.size());
 | 
						|
}
 | 
						|
 | 
						|
template <typename Array>
 | 
						|
auto copy_dest_slice(sycl::queue& q, Array& src, Array& dest, int dim,
 | 
						|
                     int start, int end)
 | 
						|
{
 | 
						|
  dprintf("copy dest_slice %d %d %d\n", dim, start, end);
 | 
						|
  auto s_src = src.to_span();
 | 
						|
  auto s_dest = dest.to_span();
 | 
						|
  assert(dim == 0 || dim == 1);
 | 
						|
  if (dim == 0) {
 | 
						|
    assert(src.ncols() == dest.ncols());
 | 
						|
    if (start < 0) {
 | 
						|
      start += dest.nrows();
 | 
						|
    }
 | 
						|
    if (end < 0) {
 | 
						|
      end += dest.nrows();
 | 
						|
    } else if (end == 0 && start > end) {
 | 
						|
      end = dest.nrows();
 | 
						|
    }
 | 
						|
    assert(start < end);
 | 
						|
    auto range = sycl::range<2>(dest.ncols(), end - start);
 | 
						|
    dprintf("d_z < buf range %d - %d (%d, %d)\n", start, end, dest.ncols(),
 | 
						|
            end - start);
 | 
						|
    auto e = q.submit([&](sycl::handler& cgh) {
 | 
						|
      cgh.parallel_for(range, [=](sycl::item<2> item) {
 | 
						|
        int row = item.get_id(1);
 | 
						|
        int col = item.get_id(0);
 | 
						|
        s_dest(start + row, col) = s_src(row, col);
 | 
						|
      });
 | 
						|
    });
 | 
						|
    return e;
 | 
						|
  } else {
 | 
						|
    assert(src.nrows() == dest.nrows());
 | 
						|
    if (start < 0) {
 | 
						|
      start += dest.ncols();
 | 
						|
    }
 | 
						|
    if (end < 0) {
 | 
						|
      end += dest.ncols();
 | 
						|
    } else if (end == 0 && start > end) {
 | 
						|
      end = dest.ncols();
 | 
						|
    }
 | 
						|
    auto range = sycl::range<2>(end - start, dest.nrows());
 | 
						|
    auto e = q.submit([&](sycl::handler& cgh) {
 | 
						|
      cgh.parallel_for(range, [=](sycl::item<2> item) {
 | 
						|
        int row = item.get_id(1);
 | 
						|
        int col = item.get_id(0);
 | 
						|
        s_dest(row, start + col) = s_src(row, col);
 | 
						|
      });
 | 
						|
    });
 | 
						|
    return e;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename Array>
 | 
						|
auto copy_src_slice(sycl::queue& q, Array& src, Array& dest, int dim, int start,
 | 
						|
                    int end)
 | 
						|
{
 | 
						|
  dprintf("copy  src_slice %d %d %d (%d, %d) -> (%d, %d)\n", dim, start, end,
 | 
						|
          src.nrows(), src.ncols(), dest.nrows(), dest.ncols());
 | 
						|
  assert(dim == 0 || dim == 1);
 | 
						|
  auto s_src = src.to_span();
 | 
						|
  auto s_dest = dest.to_span();
 | 
						|
  if (dim == 0) {
 | 
						|
    assert(src.ncols() == dest.ncols());
 | 
						|
    if (start < 0) {
 | 
						|
      start += src.nrows();
 | 
						|
    }
 | 
						|
    if (end < 0) {
 | 
						|
      end += src.nrows();
 | 
						|
    } else if (end == 0 && start > end) {
 | 
						|
      end = src.nrows();
 | 
						|
    }
 | 
						|
    auto range = sycl::range<2>(dest.ncols(), end - start);
 | 
						|
    dprintf("buf < d_z range %d - %d (%d, %d)\n", start, end, dest.ncols(),
 | 
						|
            end - start);
 | 
						|
    auto e = q.submit([&](sycl::handler& cgh) {
 | 
						|
      cgh.parallel_for(range, [=](sycl::item<2> item) {
 | 
						|
        int row = item.get_id(1);
 | 
						|
        int col = item.get_id(0);
 | 
						|
        s_dest(row, col) = s_src(start + row, col);
 | 
						|
      });
 | 
						|
    });
 | 
						|
    return e;
 | 
						|
  } else {
 | 
						|
    assert(src.nrows() == dest.nrows());
 | 
						|
    if (start < 0) {
 | 
						|
      start += src.ncols();
 | 
						|
    }
 | 
						|
    if (end < 0) {
 | 
						|
      end += src.ncols();
 | 
						|
    } else if (end == 0 && start > end) {
 | 
						|
      end = src.ncols();
 | 
						|
    }
 | 
						|
    auto range = sycl::range<2>(end - start, dest.nrows());
 | 
						|
    auto e = q.submit([&](sycl::handler& cgh) {
 | 
						|
      cgh.parallel_for(range, [=](sycl::item<2> item) {
 | 
						|
        int row = item.get_id(1);
 | 
						|
        int col = item.get_id(0);
 | 
						|
        s_dest(row, col) = s_src(row, start + col);
 | 
						|
      });
 | 
						|
    });
 | 
						|
    return e;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
inline void check(const char* fname, int line, int mpi_rval)
 | 
						|
{
 | 
						|
  if (mpi_rval != MPI_SUCCESS) {
 | 
						|
    printf("%s:%d error %d\n", fname, line, mpi_rval);
 | 
						|
    exit(2);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#define CHECK(x) check(__FILE__, __LINE__, (x))
 | 
						|
 | 
						|
static constexpr double stencil5[] = {1.0 / 12.0, -2.0 / 3.0, 0.0, 2.0 / 3.0,
 | 
						|
                                      -1.0 / 12.0};
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate 1d stencil of second dimension of 2d array on GPU. Out array must
 | 
						|
 * be contiguous column major nrows x ncols array, while in array must be
 | 
						|
 * (nrows)x(ncols+4) to accomodate 2 ghost points in each direction for the
 | 
						|
 * second dimension.
 | 
						|
 *
 | 
						|
 * Returns sycl event, async with respect to host.
 | 
						|
 */
 | 
						|
template <typename Array>
 | 
						|
auto stencil2d_1d_5(sycl::queue& q, Array& out2d, Array& in2d, double scale)
 | 
						|
{
 | 
						|
  // Note: swap index order; SYCL is row-major oriented, and this example
 | 
						|
  // is col-major
 | 
						|
  auto range = sycl::range<2>(out2d.ncols(), out2d.nrows());
 | 
						|
  auto s_in2d = in2d.to_span();
 | 
						|
  auto s_out2d = out2d.to_span();
 | 
						|
  auto e = q.submit([&](sycl::handler& cgh) {
 | 
						|
    cgh.parallel_for(range, [=](sycl::item<2> item) {
 | 
						|
      int row = item.get_id(1);
 | 
						|
      int col = item.get_id(0);
 | 
						|
      s_out2d(row, col) = (stencil5[0] * s_in2d(row + 0, col) +
 | 
						|
                           stencil5[1] * s_in2d(row + 1, col) +
 | 
						|
                           stencil5[2] * s_in2d(row + 2, col) +
 | 
						|
                           stencil5[3] * s_in2d(row + 3, col) +
 | 
						|
                           stencil5[4] * s_in2d(row + 4, col)) *
 | 
						|
                          scale;
 | 
						|
    });
 | 
						|
  });
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the norm of the difference of two arrays, as sqrt of sum of
 | 
						|
 * squared distances.
 | 
						|
 */
 | 
						|
double diff_norm(sycl::queue& q, std::size_t size, double* d_a, double* d_b)
 | 
						|
{
 | 
						|
  double result = 0.0;
 | 
						|
  sycl::buffer<double> result_buf{&result, 1};
 | 
						|
  {
 | 
						|
    sycl::range<1> range(size);
 | 
						|
    auto e = q.submit([&](sycl::handler& cgh) {
 | 
						|
      auto reducer = sycl::reduction(result_buf, cgh, 0.0, std::plus<>{});
 | 
						|
      cgh.parallel_for(range, reducer, [=](sycl::id<1> idx, auto& r) {
 | 
						|
        double diff = d_a[idx] - d_b[idx];
 | 
						|
        r.combine(diff * diff);
 | 
						|
      });
 | 
						|
    });
 | 
						|
    e.wait();
 | 
						|
  }
 | 
						|
  return std::sqrt(result_buf.get_host_access()[0]);
 | 
						|
}
 | 
						|
 | 
						|
sycl::queue get_rank_queue(int n_ranks, int rank)
 | 
						|
{
 | 
						|
  int n_devices, device_idx, ranks_per_device;
 | 
						|
 | 
						|
  sycl::context ctx{};
 | 
						|
  auto devices = ctx.get_devices();
 | 
						|
  n_devices = devices.size();
 | 
						|
 | 
						|
  if (n_ranks > n_devices) {
 | 
						|
    if (n_ranks % n_devices != 0) {
 | 
						|
      printf(
 | 
						|
        "ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n",
 | 
						|
        n_ranks, n_devices);
 | 
						|
      exit(EXIT_FAILURE);
 | 
						|
    }
 | 
						|
    ranks_per_device = n_ranks / n_devices;
 | 
						|
    device_idx = rank / ranks_per_device;
 | 
						|
  } else {
 | 
						|
    ranks_per_device = 1;
 | 
						|
    device_idx = rank;
 | 
						|
  }
 | 
						|
 | 
						|
  dprintf("%d: n_devices = %d\n", rank, n_devices);
 | 
						|
  dprintf("%d: device_idx = %d\n", rank, device_idx);
 | 
						|
 | 
						|
  return sycl::queue{devices[device_idx], sycl::property::queue::in_order()};
 | 
						|
}
 | 
						|
 | 
						|
// exchange in first dimension, staging into contiguous buffers on device
 | 
						|
template <typename T, sycl::usm::alloc Alloc>
 | 
						|
void boundary_exchange_x(MPI_Comm comm, int world_size, int rank,
 | 
						|
                         sycl::queue& q, int n_bnd, array2d<T, Alloc>& d_z,
 | 
						|
                         bool stage_host = false)
 | 
						|
{
 | 
						|
  static array2d<double, sycl::usm::alloc::device> sbuf_l{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
  static array2d<double, sycl::usm::alloc::device> sbuf_r{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
  static array2d<double, sycl::usm::alloc::device> rbuf_l{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
  static array2d<double, sycl::usm::alloc::device> rbuf_r{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
 | 
						|
  static array2d<double, sycl::usm::alloc::host> h_sbuf_l{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
  static array2d<double, sycl::usm::alloc::host> h_sbuf_r{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
  static array2d<double, sycl::usm::alloc::host> h_rbuf_l{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
  static array2d<double, sycl::usm::alloc::host> h_rbuf_r{q, n_bnd,
 | 
						|
                                                          d_z.ncols()};
 | 
						|
 | 
						|
  int buf_size = sbuf_l.size();
 | 
						|
 | 
						|
  MPI_Request req_l[2];
 | 
						|
  MPI_Request req_r[2];
 | 
						|
 | 
						|
  int rank_l = rank - 1;
 | 
						|
  int rank_r = rank + 1;
 | 
						|
 | 
						|
  // start async copy of ghost points into send buffers
 | 
						|
  if (rank_l >= 0) {
 | 
						|
    dprintf("%d: rank_l = %d\n", rank, rank_l);
 | 
						|
    fflush(nullptr);
 | 
						|
    // sbuf_l = d_z.view(_all, _s(n_bnd, 2 * n_bnd));
 | 
						|
    auto e = copy_src_slice(q, d_z, sbuf_l, 0, n_bnd, 2 * n_bnd);
 | 
						|
    if (stage_host) {
 | 
						|
      e.wait();
 | 
						|
      copy(q, sbuf_l, h_sbuf_l).wait();
 | 
						|
      for (int i = 0; i < h_sbuf_l.ncols(); i++) {
 | 
						|
        for (int j = 0; j < h_sbuf_l.nrows(); j++) {
 | 
						|
          dprintf("%d: sbuf_l[%d, %d] = %f\n", rank, j, i, h_sbuf_l(j, i));
 | 
						|
          fflush(nullptr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (rank_r < world_size) {
 | 
						|
    dprintf("%d: rank_r = %d\n", rank, rank_r);
 | 
						|
    fflush(nullptr);
 | 
						|
    // sbuf_r = d_z.view(_all, _s(-2 * n_bnd, -n_bnd));
 | 
						|
    auto e = copy_src_slice(q, d_z, sbuf_r, 0, -2 * n_bnd, -n_bnd);
 | 
						|
    if (stage_host) {
 | 
						|
      e.wait();
 | 
						|
      copy(q, sbuf_r, h_sbuf_r).wait();
 | 
						|
      for (int i = 0; i < h_sbuf_r.ncols(); i++) {
 | 
						|
        for (int j = 0; j < h_sbuf_r.nrows(); j++) {
 | 
						|
          dprintf("%d: sbuf_r[%d, %d] = %f\n", rank, j, i, h_sbuf_r(j, i));
 | 
						|
          fflush(nullptr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // initiate async recv
 | 
						|
  if (rank_l >= 0) {
 | 
						|
    double* rbuf_l_data = nullptr;
 | 
						|
    if (stage_host) {
 | 
						|
      rbuf_l_data = h_rbuf_l.data();
 | 
						|
    } else {
 | 
						|
      rbuf_l_data = rbuf_l.data();
 | 
						|
    }
 | 
						|
    MPI_Irecv(rbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 123, comm, &req_l[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (rank_r < world_size) {
 | 
						|
    double* rbuf_r_data = nullptr;
 | 
						|
    if (stage_host) {
 | 
						|
      rbuf_r_data = h_rbuf_r.data();
 | 
						|
    } else {
 | 
						|
      rbuf_r_data = rbuf_r.data();
 | 
						|
    }
 | 
						|
    MPI_Irecv(rbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 456, comm, &req_r[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  // wait for send buffer fill
 | 
						|
  q.wait();
 | 
						|
 | 
						|
  // initiate async sends
 | 
						|
  if (rank_l >= 0) {
 | 
						|
    double* sbuf_l_data = nullptr;
 | 
						|
    if (stage_host) {
 | 
						|
      sbuf_l_data = h_sbuf_l.data();
 | 
						|
    } else {
 | 
						|
      sbuf_l_data = sbuf_l.data();
 | 
						|
    }
 | 
						|
    MPI_Isend(sbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 456, comm, &req_l[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (rank_r < world_size) {
 | 
						|
    double* sbuf_r_data = nullptr;
 | 
						|
    if (stage_host) {
 | 
						|
      sbuf_r_data = h_sbuf_r.data();
 | 
						|
    } else {
 | 
						|
      sbuf_r_data = sbuf_r.data();
 | 
						|
    }
 | 
						|
    MPI_Isend(sbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 123, comm, &req_r[1]);
 | 
						|
  }
 | 
						|
 | 
						|
  // wait for send/recv to complete, then copy data back into main data array
 | 
						|
  int mpi_rval;
 | 
						|
  if (rank_l >= 0) {
 | 
						|
    mpi_rval = MPI_Waitall(2, req_l, MPI_STATUSES_IGNORE);
 | 
						|
    if (mpi_rval != MPI_SUCCESS) {
 | 
						|
      printf("%d: send_l error: %d\n", rank, mpi_rval);
 | 
						|
    }
 | 
						|
    if (stage_host) {
 | 
						|
#ifdef DEBUG
 | 
						|
      for (int i = 0; i < h_rbuf_l.ncols(); i++) {
 | 
						|
        for (int j = 0; j < h_rbuf_l.nrows(); j++) {
 | 
						|
          dprintf("%d: rbuf_l[%d, %d] = %f\n", rank, j, i, h_rbuf_l(j, i));
 | 
						|
          fflush(nullptr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      copy(q, h_rbuf_l, rbuf_l).wait();
 | 
						|
    }
 | 
						|
    // d_z.view(_all, _s(0, n_bnd)) = rbuf_l;
 | 
						|
    copy_dest_slice(q, rbuf_l, d_z, 0, 0, n_bnd);
 | 
						|
  }
 | 
						|
  if (rank_r < world_size) {
 | 
						|
    mpi_rval = MPI_Waitall(2, req_r, MPI_STATUSES_IGNORE);
 | 
						|
    if (mpi_rval != MPI_SUCCESS) {
 | 
						|
      printf("%d: send_r error: %d\n", rank, mpi_rval);
 | 
						|
    }
 | 
						|
    if (stage_host) {
 | 
						|
#ifdef DEBUG
 | 
						|
      for (int i = 0; i < h_rbuf_r.ncols(); i++) {
 | 
						|
        for (int j = 0; j < h_rbuf_r.nrows(); j++) {
 | 
						|
          dprintf("%d: rbuf_r[%d, %d] = %f\n", rank, j, i, h_rbuf_r(j, i));
 | 
						|
          fflush(nullptr);
 | 
						|
        }
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      copy(q, h_rbuf_r, rbuf_r).wait();
 | 
						|
    }
 | 
						|
    // d_z.view(_all, _s(-n_bnd, _)) = rbuf_r;
 | 
						|
    copy_dest_slice(q, rbuf_r, d_z, 0, -n_bnd, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  q.wait();
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char** argv)
 | 
						|
{
 | 
						|
  using T = double;
 | 
						|
 | 
						|
  static_assert(
 | 
						|
    std::is_trivially_copyable_v<span2d<T, sycl::usm::alloc::device>>,
 | 
						|
    "span2d device not trivial");
 | 
						|
  static_assert(std::is_trivially_copyable_v<span2d<T, sycl::usm::alloc::host>>,
 | 
						|
                "span2d host not trivial");
 | 
						|
 | 
						|
  // Note: domain will be n_global x n_global plus ghost points in one dimension
 | 
						|
  int n_global = 8 * 1024;
 | 
						|
  bool stage_host = false;
 | 
						|
  int n_iter = 100;
 | 
						|
  int n_warmup = 5;
 | 
						|
 | 
						|
  if (argc > 1) {
 | 
						|
    n_global = std::atoi(argv[1]) * 1024;
 | 
						|
  }
 | 
						|
  if (argc > 2) {
 | 
						|
    if (argv[2][0] == '1') {
 | 
						|
      stage_host = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (argc > 3) {
 | 
						|
    n_iter = std::atoi(argv[3]);
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
  n_global /= 1024;
 | 
						|
  n_iter = 1;
 | 
						|
  n_warmup = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  int n_sten = 5;
 | 
						|
  int n_bnd = (n_sten - 1) / 2;
 | 
						|
  int world_size, world_rank, device_id;
 | 
						|
  uint32_t vendor_id;
 | 
						|
 | 
						|
  MPI_Init(NULL, NULL);
 | 
						|
 | 
						|
  MPI_Comm_size(MPI_COMM_WORLD, &world_size);
 | 
						|
  MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 | 
						|
 | 
						|
  if (n_global % world_size != 0) {
 | 
						|
    printf("%d: nmpi (%d) must be divisor of domain size (%d), exiting\n",
 | 
						|
           world_rank, world_size, n_global);
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
 | 
						|
  const int n_local = n_global / world_size;
 | 
						|
  const int n_local_with_ghost = n_local + 2 * n_bnd;
 | 
						|
 | 
						|
  sycl::queue q = get_rank_queue(world_size, world_rank);
 | 
						|
 | 
						|
  vendor_id = q.get_device().get_info<sycl::info::device::vendor_id>();
 | 
						|
 | 
						|
  if (world_rank == 0) {
 | 
						|
    printf("n procs    = %d\n", world_size);
 | 
						|
    printf("rank       = %d\n", world_rank);
 | 
						|
    printf("n_global   = %d\n", n_global);
 | 
						|
    printf("n_local    = %d\n", n_local);
 | 
						|
    printf("n_iter     = %d\n", n_iter);
 | 
						|
    printf("n_warmup   = %d\n", n_warmup);
 | 
						|
    printf("stage_host = %d\n", stage_host);
 | 
						|
  }
 | 
						|
 | 
						|
  int z_size = n_local_with_ghost * n_global;
 | 
						|
  int dzdx_size = n_local * n_global;
 | 
						|
 | 
						|
  array2d<T, sycl::usm::alloc::host> h_z{q, n_local_with_ghost, n_global};
 | 
						|
  array2d<T, sycl::usm::alloc::device> d_z{q, n_local_with_ghost, n_global};
 | 
						|
 | 
						|
  array2d<T, sycl::usm::alloc::host> h_dzdx_actual{q, n_local, n_global};
 | 
						|
  array2d<T, sycl::usm::alloc::host> h_dzdx_numeric{q, n_local, n_global};
 | 
						|
  array2d<T, sycl::usm::alloc::device> d_dzdx_actual{q, n_local, n_global};
 | 
						|
  array2d<T, sycl::usm::alloc::device> d_dzdx_numeric{q, n_local, n_global};
 | 
						|
 | 
						|
  double lx = 8;
 | 
						|
  double dx = lx / n_global;
 | 
						|
  double lx_local = lx / world_size;
 | 
						|
  double scale = n_global / lx;
 | 
						|
  auto fn = [](double x, double y) { return x * x * x + y * y; };
 | 
						|
  auto fn_dzdx = [](double x, double y) { return 3 * x * x; };
 | 
						|
 | 
						|
  struct timespec start, end;
 | 
						|
  double iter_time = 0.0;
 | 
						|
  double total_time = 0.0;
 | 
						|
 | 
						|
  double x_start = world_rank * lx_local;
 | 
						|
  for (int j = 0; j < h_z.ncols(); j++) {
 | 
						|
    double ytmp = j * dx;
 | 
						|
    for (int i = 0; i < n_local; i++) {
 | 
						|
      double xtmp = x_start + i * dx;
 | 
						|
      h_z(i + n_bnd, j) = fn(xtmp, ytmp);
 | 
						|
      h_dzdx_actual(i, j) = fn_dzdx(xtmp, ytmp);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // fill boundary points on ends
 | 
						|
  if (world_rank == 0) {
 | 
						|
    for (int j = 0; j < h_z.ncols(); j++) {
 | 
						|
      double ytmp = j * dx;
 | 
						|
      for (int i = 0; i < n_bnd; i++) {
 | 
						|
        double xtmp = (i - n_bnd) * dx;
 | 
						|
        h_z(i, j) = fn(xtmp, ytmp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (world_rank == world_size - 1) {
 | 
						|
    for (int j = 0; j < h_z.ncols(); j++) {
 | 
						|
      double ytmp = j * dx;
 | 
						|
      for (int i = 0; i < n_bnd; i++) {
 | 
						|
        double xtmp = lx + i * dx;
 | 
						|
        h_z(n_bnd + n_local + i, j) = fn(xtmp, ytmp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
  for (int r = 0; r < world_size; r++) {
 | 
						|
    if (r != world_rank) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = n_bnd; i < 2 * n_bnd; i++) {
 | 
						|
      dprintf("%d: [%d, :]", world_rank, i);
 | 
						|
      for (int j = 0; j < std::min(20, h_z.ncols()); j++) {
 | 
						|
        dprintf(" %f", h_z(i, j));
 | 
						|
      }
 | 
						|
      dprintf("\n");
 | 
						|
    }
 | 
						|
    for (int i = h_z.nrows() - 2 * n_bnd; i < h_z.nrows() - n_bnd; i++) {
 | 
						|
      dprintf("%d: [%d, :]", world_rank, i);
 | 
						|
      for (int j = 0; j < std::min(20, h_z.ncols()); j++) {
 | 
						|
        dprintf(" %f", h_z(i, j));
 | 
						|
      }
 | 
						|
      dprintf("\n");
 | 
						|
    }
 | 
						|
 | 
						|
    MPI_Barrier(MPI_COMM_WORLD);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  copy(q, h_z, d_z);
 | 
						|
 | 
						|
  for (int i = 0; i < n_warmup + n_iter; i++) {
 | 
						|
    clock_gettime(CLOCK_MONOTONIC, &start);
 | 
						|
    boundary_exchange_x(MPI_COMM_WORLD, world_size, world_rank, q, n_bnd, d_z,
 | 
						|
                        stage_host);
 | 
						|
    clock_gettime(CLOCK_MONOTONIC, &end);
 | 
						|
    iter_time =
 | 
						|
      ((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
 | 
						|
 | 
						|
    if (i >= n_warmup) {
 | 
						|
      total_time += iter_time;
 | 
						|
    }
 | 
						|
 | 
						|
    // do some calculation, to try to more closely simulate what happens in GENE
 | 
						|
    auto e = stencil2d_1d_5(q, d_dzdx_numeric, d_z, scale);
 | 
						|
    e.wait();
 | 
						|
  }
 | 
						|
  printf("%d: exchange time %0.8f ms\n", world_rank,
 | 
						|
         total_time / n_iter * 1000);
 | 
						|
 | 
						|
  copy(q, d_dzdx_numeric, h_dzdx_numeric).wait();
 | 
						|
 | 
						|
  /*
 | 
						|
  for (int i = 0; i < 5; i++) {
 | 
						|
    int idx = idx2(n_global, 8, i);
 | 
						|
    printf("%d la %f\n%d ln %f\n", world_rank, h_dzdx_actual[idx], world_rank,
 | 
						|
           h_dzdx_numeric[idx]);
 | 
						|
  }
 | 
						|
  for (int i = 0; i < 5; i++) {
 | 
						|
    int idx = idx2(n_global, 8, n_local - 1 - i);
 | 
						|
    printf("%d ra %f\n%d rn %f\n", world_rank, h_dzdx_actual[idx], world_rank,
 | 
						|
           h_dzdx_numeric[idx]);
 | 
						|
  }
 | 
						|
  */
 | 
						|
 | 
						|
  double err_norm = diff_norm(q, h_dzdx_numeric.size(), h_dzdx_numeric.data(),
 | 
						|
                              h_dzdx_actual.data());
 | 
						|
 | 
						|
  printf("%d: [0x%08x] err_norm = %.8f\n", world_rank, vendor_id, err_norm);
 | 
						|
 | 
						|
  MPI_Finalize();
 | 
						|
 | 
						|
  return EXIT_SUCCESS;
 | 
						|
}
 |