You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

706 lines
21 KiB

/*
* Test GPU aware MPI on different platforms using a distributed
* 1d stencil on a 2d array. The exchange in second (non-contiguous)
* direction forces use of staging buffers, which replicates what
* is needed for all but the innermost dimension exchanges in the
* GENE fusion code.
*
* Takes optional command line arg for size of each dimension of the domain
* n_global, in 1024 increments. Default is 8 * 1024 (so 256K plus ghost points
* in size for doulbles per array), which should fit on any system but may not
* be enough to tax larger HPC GPUs and MPI impelmentations.
*
* There will be four exchange buffers of size 2 * n_global, i.e. 128K each
* by default.
*
* Modified version that uses minimal owning (array2d) and non-owning (span2d)
* classes to make indexing handling less error prone, without using all of
* gtensor. Note that the owning class is not trivially copyable and not device
* copyable, because it must have a non-trivial destructor.
*
* TODO: Since no temporaries are used, perhaps a helper that allocates and
* returns a span is a simpler option to create this minimal example?
*/
#include <cassert>
#include <cmath>
#include <memory>
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <type_traits>
#include "sycl/sycl.hpp"
// #define DEBUG
#ifdef DEBUG
#define dprintf(...) fprintf(stderr, __VA_ARGS__)
#else
#define dprintf(...) \
do { \
} while (0)
#endif
constexpr std::size_t idx2(int n, int row, int col)
{
return row + col * n;
}
template <typename T, sycl::usm::alloc Alloc>
class span2d
{
public:
using value_type = T;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = std::size_t;
span2d(T* data, const int nrows, const int ncols)
: data_(data), nrows_(nrows), ncols_(ncols)
{}
// use default copy and move ctor. Ideall move ctor would better invalidate
// the moved from object, but this is supposed to be a small example...
span2d(const span2d& other) = default;
span2d& operator=(const span2d& other) = default;
span2d(span2d&& other) = default;
span2d& operator=(span2d&& other) = default;
// Note: shallow const
reference operator()(int row, int col) const
{
assert(row < nrows_);
assert(col < ncols_);
return data_[idx2(nrows_, row, col)];
}
// Note: shallow const
reference operator[](size_type i) const
{
assert(i < (nrows_ * ncols_));
return data_[i];
}
int nrows() const { return nrows_; }
int ncols() const { return ncols_; }
size_type size() const { return nrows_ * ncols_; }
span2d to_span() { return *this; }
// Note: shallow const
pointer data() const { return data_; }
private:
const sycl::usm::alloc alloc_ = Alloc;
T* data_;
const int nrows_;
const int ncols_;
};
template <typename T>
auto empty_host(sycl::queue& q, int nrows, int ncols)
{
T* data = sycl::malloc(nrows * ncols, q, sycl::usm::alloc::host);
return span2d<T, sycl::usm::alloc::host>(data, nrows, ncols);
}
template <typename T>
auto empty_device(sycl::queue& q, int nrows, int ncols)
{
T* data = sycl::malloc(nrows * ncols, q, sycl::usm::alloc::device);
return span2d<T, sycl::usm::alloc::device>(data, nrows, ncols);
}
template <typename T, sycl::usm::alloc Alloc>
class array2d : public span2d<T, Alloc>
{
public:
using base_type = span2d<T, Alloc>;
using value_type = T;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = std::size_t;
array2d(sycl::queue& q, const int nrows, const int ncols)
: base_type(sycl::malloc<value_type>(nrows * ncols, q, Alloc), nrows,
ncols),
q_(q)
{}
// Results in a double free, why?
// ~array2d() { sycl::free(this->data(), q_); }
// skip these to keep the example simple, pass by reference everywhere
array2d(const array2d& other) = delete;
array2d& operator=(const array2d& other) = delete;
array2d(array2d&& other) = delete;
array2d& operator=(array2d&& other) = delete;
base_type to_span()
{
return base_type(this->data(), this->nrows(), this->ncols());
}
private:
sycl::queue& q_;
};
template <typename SrcArray, typename DestArray>
auto copy(sycl::queue& q, SrcArray& src, DestArray& dest)
{
static_assert(std::is_same_v<typename SrcArray::value_type,
typename DestArray::value_type>,
"value types must match");
assert(src.size() == dest.size());
return q.copy(src.data(), dest.data(), dest.size());
}
template <typename Array>
auto copy_dest_slice(sycl::queue& q, Array& src, Array& dest, int dim,
int start, int end)
{
dprintf("copy dest_slice %d %d %d\n", dim, start, end);
auto s_src = src.to_span();
auto s_dest = dest.to_span();
assert(dim == 0 || dim == 1);
if (dim == 0) {
assert(src.ncols() == dest.ncols());
if (start < 0) {
start += dest.nrows();
}
if (end < 0) {
end += dest.nrows();
} else if (end == 0 && start > end) {
end = dest.nrows();
}
assert(start < end);
auto range = sycl::range<2>(dest.ncols(), end - start);
dprintf("d_z < buf range %d - %d (%d, %d)\n", start, end, dest.ncols(),
end - start);
auto e = q.submit([&](sycl::handler& cgh) {
cgh.parallel_for(range, [=](sycl::item<2> item) {
int row = item.get_id(1);
int col = item.get_id(0);
s_dest(start + row, col) = s_src(row, col);
});
});
return e;
} else {
assert(src.nrows() == dest.nrows());
if (start < 0) {
start += dest.ncols();
}
if (end < 0) {
end += dest.ncols();
} else if (end == 0 && start > end) {
end = dest.ncols();
}
auto range = sycl::range<2>(end - start, dest.nrows());
auto e = q.submit([&](sycl::handler& cgh) {
cgh.parallel_for(range, [=](sycl::item<2> item) {
int row = item.get_id(1);
int col = item.get_id(0);
s_dest(row, start + col) = s_src(row, col);
});
});
return e;
}
}
template <typename Array>
auto copy_src_slice(sycl::queue& q, Array& src, Array& dest, int dim, int start,
int end)
{
dprintf("copy src_slice %d %d %d (%d, %d) -> (%d, %d)\n", dim, start, end,
src.nrows(), src.ncols(), dest.nrows(), dest.ncols());
assert(dim == 0 || dim == 1);
auto s_src = src.to_span();
auto s_dest = dest.to_span();
if (dim == 0) {
assert(src.ncols() == dest.ncols());
if (start < 0) {
start += src.nrows();
}
if (end < 0) {
end += src.nrows();
} else if (end == 0 && start > end) {
end = src.nrows();
}
auto range = sycl::range<2>(dest.ncols(), end - start);
dprintf("buf < d_z range %d - %d (%d, %d)\n", start, end, dest.ncols(),
end - start);
auto e = q.submit([&](sycl::handler& cgh) {
cgh.parallel_for(range, [=](sycl::item<2> item) {
int row = item.get_id(1);
int col = item.get_id(0);
s_dest(row, col) = s_src(start + row, col);
});
});
return e;
} else {
assert(src.nrows() == dest.nrows());
if (start < 0) {
start += src.ncols();
}
if (end < 0) {
end += src.ncols();
} else if (end == 0 && start > end) {
end = src.ncols();
}
auto range = sycl::range<2>(end - start, dest.nrows());
auto e = q.submit([&](sycl::handler& cgh) {
cgh.parallel_for(range, [=](sycl::item<2> item) {
int row = item.get_id(1);
int col = item.get_id(0);
s_dest(row, col) = s_src(row, start + col);
});
});
return e;
}
}
inline void check(const char* fname, int line, int mpi_rval)
{
if (mpi_rval != MPI_SUCCESS) {
printf("%s:%d error %d\n", fname, line, mpi_rval);
exit(2);
}
}
#define CHECK(x) check(__FILE__, __LINE__, (x))
static constexpr double stencil5[] = {1.0 / 12.0, -2.0 / 3.0, 0.0, 2.0 / 3.0,
-1.0 / 12.0};
/*
* Calculate 1d stencil of second dimension of 2d array on GPU. Out array must
* be contiguous column major nrows x ncols array, while in array must be
* (nrows)x(ncols+4) to accomodate 2 ghost points in each direction for the
* second dimension.
*
* Returns sycl event, async with respect to host.
*/
template <typename Array>
auto stencil2d_1d_5(sycl::queue& q, Array& out2d, Array& in2d, double scale)
{
// Note: swap index order; SYCL is row-major oriented, and this example
// is col-major
auto range = sycl::range<2>(out2d.ncols(), out2d.nrows());
auto s_in2d = in2d.to_span();
auto s_out2d = out2d.to_span();
auto e = q.submit([&](sycl::handler& cgh) {
cgh.parallel_for(range, [=](sycl::item<2> item) {
int row = item.get_id(1);
int col = item.get_id(0);
s_out2d(row, col) = (stencil5[0] * s_in2d(row + 0, col) +
stencil5[1] * s_in2d(row + 1, col) +
stencil5[2] * s_in2d(row + 2, col) +
stencil5[3] * s_in2d(row + 3, col) +
stencil5[4] * s_in2d(row + 4, col)) *
scale;
});
});
return e;
}
/*
* Calculate the norm of the difference of two arrays, as sqrt of sum of
* squared distances.
*/
double diff_norm(sycl::queue& q, std::size_t size, double* d_a, double* d_b)
{
double result = 0.0;
sycl::buffer<double> result_buf{&result, 1};
{
sycl::range<1> range(size);
auto e = q.submit([&](sycl::handler& cgh) {
auto reducer = sycl::reduction(result_buf, cgh, 0.0, std::plus<>{});
cgh.parallel_for(range, reducer, [=](sycl::id<1> idx, auto& r) {
double diff = d_a[idx] - d_b[idx];
r.combine(diff * diff);
});
});
e.wait();
}
return std::sqrt(result_buf.get_host_access()[0]);
}
sycl::queue get_rank_queue(int n_ranks, int rank)
{
int n_devices, device_idx, ranks_per_device;
sycl::context ctx{};
auto devices = ctx.get_devices();
n_devices = devices.size();
if (n_ranks > n_devices) {
if (n_ranks % n_devices != 0) {
printf(
"ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n",
n_ranks, n_devices);
exit(EXIT_FAILURE);
}
ranks_per_device = n_ranks / n_devices;
device_idx = rank / ranks_per_device;
} else {
ranks_per_device = 1;
device_idx = rank;
}
dprintf("%d: n_devices = %d\n", rank, n_devices);
dprintf("%d: device_idx = %d\n", rank, device_idx);
return sycl::queue{devices[device_idx], sycl::property::queue::in_order()};
}
// exchange in first dimension, staging into contiguous buffers on device
template <typename T, sycl::usm::alloc Alloc>
void boundary_exchange_x(MPI_Comm comm, int world_size, int rank,
sycl::queue& q, int n_bnd, array2d<T, Alloc>& d_z,
bool stage_host = false)
{
static array2d<double, sycl::usm::alloc::device> sbuf_l{q, n_bnd,
d_z.ncols()};
static array2d<double, sycl::usm::alloc::device> sbuf_r{q, n_bnd,
d_z.ncols()};
static array2d<double, sycl::usm::alloc::device> rbuf_l{q, n_bnd,
d_z.ncols()};
static array2d<double, sycl::usm::alloc::device> rbuf_r{q, n_bnd,
d_z.ncols()};
static array2d<double, sycl::usm::alloc::host> h_sbuf_l{q, n_bnd,
d_z.ncols()};
static array2d<double, sycl::usm::alloc::host> h_sbuf_r{q, n_bnd,
d_z.ncols()};
static array2d<double, sycl::usm::alloc::host> h_rbuf_l{q, n_bnd,
d_z.ncols()};
static array2d<double, sycl::usm::alloc::host> h_rbuf_r{q, n_bnd,
d_z.ncols()};
int buf_size = sbuf_l.size();
MPI_Request req_l[2];
MPI_Request req_r[2];
int rank_l = rank - 1;
int rank_r = rank + 1;
// start async copy of ghost points into send buffers
if (rank_l >= 0) {
dprintf("%d: rank_l = %d\n", rank, rank_l);
fflush(nullptr);
// sbuf_l = d_z.view(_all, _s(n_bnd, 2 * n_bnd));
auto e = copy_src_slice(q, d_z, sbuf_l, 0, n_bnd, 2 * n_bnd);
if (stage_host) {
e.wait();
copy(q, sbuf_l, h_sbuf_l).wait();
for (int i = 0; i < h_sbuf_l.ncols(); i++) {
for (int j = 0; j < h_sbuf_l.nrows(); j++) {
dprintf("%d: sbuf_l[%d, %d] = %f\n", rank, j, i, h_sbuf_l(j, i));
fflush(nullptr);
}
}
}
}
if (rank_r < world_size) {
dprintf("%d: rank_r = %d\n", rank, rank_r);
fflush(nullptr);
// sbuf_r = d_z.view(_all, _s(-2 * n_bnd, -n_bnd));
auto e = copy_src_slice(q, d_z, sbuf_r, 0, -2 * n_bnd, -n_bnd);
if (stage_host) {
e.wait();
copy(q, sbuf_r, h_sbuf_r).wait();
for (int i = 0; i < h_sbuf_r.ncols(); i++) {
for (int j = 0; j < h_sbuf_r.nrows(); j++) {
dprintf("%d: sbuf_r[%d, %d] = %f\n", rank, j, i, h_sbuf_r(j, i));
fflush(nullptr);
}
}
}
}
// initiate async recv
if (rank_l >= 0) {
double* rbuf_l_data = nullptr;
if (stage_host) {
rbuf_l_data = h_rbuf_l.data();
} else {
rbuf_l_data = rbuf_l.data();
}
MPI_Irecv(rbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 123, comm, &req_l[0]);
}
if (rank_r < world_size) {
double* rbuf_r_data = nullptr;
if (stage_host) {
rbuf_r_data = h_rbuf_r.data();
} else {
rbuf_r_data = rbuf_r.data();
}
MPI_Irecv(rbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 456, comm, &req_r[0]);
}
// wait for send buffer fill
q.wait();
// initiate async sends
if (rank_l >= 0) {
double* sbuf_l_data = nullptr;
if (stage_host) {
sbuf_l_data = h_sbuf_l.data();
} else {
sbuf_l_data = sbuf_l.data();
}
MPI_Isend(sbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 456, comm, &req_l[1]);
}
if (rank_r < world_size) {
double* sbuf_r_data = nullptr;
if (stage_host) {
sbuf_r_data = h_sbuf_r.data();
} else {
sbuf_r_data = sbuf_r.data();
}
MPI_Isend(sbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 123, comm, &req_r[1]);
}
// wait for send/recv to complete, then copy data back into main data array
int mpi_rval;
if (rank_l >= 0) {
mpi_rval = MPI_Waitall(2, req_l, MPI_STATUSES_IGNORE);
if (mpi_rval != MPI_SUCCESS) {
printf("%d: send_l error: %d\n", rank, mpi_rval);
}
if (stage_host) {
#ifdef DEBUG
for (int i = 0; i < h_rbuf_l.ncols(); i++) {
for (int j = 0; j < h_rbuf_l.nrows(); j++) {
dprintf("%d: rbuf_l[%d, %d] = %f\n", rank, j, i, h_rbuf_l(j, i));
fflush(nullptr);
}
}
#endif
copy(q, h_rbuf_l, rbuf_l).wait();
}
// d_z.view(_all, _s(0, n_bnd)) = rbuf_l;
copy_dest_slice(q, rbuf_l, d_z, 0, 0, n_bnd);
}
if (rank_r < world_size) {
mpi_rval = MPI_Waitall(2, req_r, MPI_STATUSES_IGNORE);
if (mpi_rval != MPI_SUCCESS) {
printf("%d: send_r error: %d\n", rank, mpi_rval);
}
if (stage_host) {
#ifdef DEBUG
for (int i = 0; i < h_rbuf_r.ncols(); i++) {
for (int j = 0; j < h_rbuf_r.nrows(); j++) {
dprintf("%d: rbuf_r[%d, %d] = %f\n", rank, j, i, h_rbuf_r(j, i));
fflush(nullptr);
}
}
#endif
copy(q, h_rbuf_r, rbuf_r).wait();
}
// d_z.view(_all, _s(-n_bnd, _)) = rbuf_r;
copy_dest_slice(q, rbuf_r, d_z, 0, -n_bnd, 0);
}
q.wait();
}
int main(int argc, char** argv)
{
using T = double;
static_assert(
std::is_trivially_copyable_v<span2d<T, sycl::usm::alloc::device>>,
"span2d device not trivial");
static_assert(std::is_trivially_copyable_v<span2d<T, sycl::usm::alloc::host>>,
"span2d host not trivial");
// Note: domain will be n_global x n_global plus ghost points in one dimension
int n_global = 8 * 1024;
bool stage_host = false;
int n_iter = 100;
int n_warmup = 5;
if (argc > 1) {
n_global = std::atoi(argv[1]) * 1024;
}
if (argc > 2) {
if (argv[2][0] == '1') {
stage_host = true;
}
}
if (argc > 3) {
n_iter = std::atoi(argv[3]);
}
#ifdef DEBUG
n_global /= 1024;
n_iter = 1;
n_warmup = 0;
#endif
int n_sten = 5;
int n_bnd = (n_sten - 1) / 2;
int world_size, world_rank, device_id;
uint32_t vendor_id;
MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
if (n_global % world_size != 0) {
printf("%d: nmpi (%d) must be divisor of domain size (%d), exiting\n",
world_rank, world_size, n_global);
exit(1);
}
const int n_local = n_global / world_size;
const int n_local_with_ghost = n_local + 2 * n_bnd;
sycl::queue q = get_rank_queue(world_size, world_rank);
vendor_id = q.get_device().get_info<sycl::info::device::vendor_id>();
if (world_rank == 0) {
printf("n procs = %d\n", world_size);
printf("rank = %d\n", world_rank);
printf("n_global = %d\n", n_global);
printf("n_local = %d\n", n_local);
printf("n_iter = %d\n", n_iter);
printf("n_warmup = %d\n", n_warmup);
printf("stage_host = %d\n", stage_host);
}
int z_size = n_local_with_ghost * n_global;
int dzdx_size = n_local * n_global;
array2d<T, sycl::usm::alloc::host> h_z{q, n_local_with_ghost, n_global};
array2d<T, sycl::usm::alloc::device> d_z{q, n_local_with_ghost, n_global};
array2d<T, sycl::usm::alloc::host> h_dzdx_actual{q, n_local, n_global};
array2d<T, sycl::usm::alloc::host> h_dzdx_numeric{q, n_local, n_global};
array2d<T, sycl::usm::alloc::device> d_dzdx_actual{q, n_local, n_global};
array2d<T, sycl::usm::alloc::device> d_dzdx_numeric{q, n_local, n_global};
double lx = 8;
double dx = lx / n_global;
double lx_local = lx / world_size;
double scale = n_global / lx;
auto fn = [](double x, double y) { return x * x * x + y * y; };
auto fn_dzdx = [](double x, double y) { return 3 * x * x; };
struct timespec start, end;
double iter_time = 0.0;
double total_time = 0.0;
double x_start = world_rank * lx_local;
for (int j = 0; j < h_z.ncols(); j++) {
double ytmp = j * dx;
for (int i = 0; i < n_local; i++) {
double xtmp = x_start + i * dx;
h_z(i + n_bnd, j) = fn(xtmp, ytmp);
h_dzdx_actual(i, j) = fn_dzdx(xtmp, ytmp);
}
}
// fill boundary points on ends
if (world_rank == 0) {
for (int j = 0; j < h_z.ncols(); j++) {
double ytmp = j * dx;
for (int i = 0; i < n_bnd; i++) {
double xtmp = (i - n_bnd) * dx;
h_z(i, j) = fn(xtmp, ytmp);
}
}
}
if (world_rank == world_size - 1) {
for (int j = 0; j < h_z.ncols(); j++) {
double ytmp = j * dx;
for (int i = 0; i < n_bnd; i++) {
double xtmp = lx + i * dx;
h_z(n_bnd + n_local + i, j) = fn(xtmp, ytmp);
}
}
}
#ifdef DEBUG
for (int r = 0; r < world_size; r++) {
if (r != world_rank) {
continue;
}
for (int i = n_bnd; i < 2 * n_bnd; i++) {
dprintf("%d: [%d, :]", world_rank, i);
for (int j = 0; j < std::min(20, h_z.ncols()); j++) {
dprintf(" %f", h_z(i, j));
}
dprintf("\n");
}
for (int i = h_z.nrows() - 2 * n_bnd; i < h_z.nrows() - n_bnd; i++) {
dprintf("%d: [%d, :]", world_rank, i);
for (int j = 0; j < std::min(20, h_z.ncols()); j++) {
dprintf(" %f", h_z(i, j));
}
dprintf("\n");
}
MPI_Barrier(MPI_COMM_WORLD);
}
#endif
copy(q, h_z, d_z);
for (int i = 0; i < n_warmup + n_iter; i++) {
clock_gettime(CLOCK_MONOTONIC, &start);
boundary_exchange_x(MPI_COMM_WORLD, world_size, world_rank, q, n_bnd, d_z,
stage_host);
clock_gettime(CLOCK_MONOTONIC, &end);
iter_time =
((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
if (i >= n_warmup) {
total_time += iter_time;
}
// do some calculation, to try to more closely simulate what happens in GENE
auto e = stencil2d_1d_5(q, d_dzdx_numeric, d_z, scale);
e.wait();
}
printf("%d: exchange time %0.8f ms\n", world_rank,
total_time / n_iter * 1000);
copy(q, d_dzdx_numeric, h_dzdx_numeric).wait();
/*
for (int i = 0; i < 5; i++) {
int idx = idx2(n_global, 8, i);
printf("%d la %f\n%d ln %f\n", world_rank, h_dzdx_actual[idx], world_rank,
h_dzdx_numeric[idx]);
}
for (int i = 0; i < 5; i++) {
int idx = idx2(n_global, 8, n_local - 1 - i);
printf("%d ra %f\n%d rn %f\n", world_rank, h_dzdx_actual[idx], world_rank,
h_dzdx_numeric[idx]);
}
*/
double err_norm = diff_norm(q, h_dzdx_numeric.size(), h_dzdx_numeric.data(),
h_dzdx_actual.data());
printf("%d: [0x%08x] err_norm = %.8f\n", world_rank, vendor_id, err_norm);
MPI_Finalize();
return EXIT_SUCCESS;
}