/* * Test GPU aware MPI on different platforms using a distributed * 1d stencil on a 2d array. The exchange in second (non-contiguous) * direction forces use of staging buffers, which replicates what * is needed for all but the innermost dimension exchanges in the * GENE fusion code. * * Takes optional command line arg for size of each dimension of the domain * n_global, in 1024 increments. Default is 8 * 1024 (so 256K plus ghost points * in size for doulbles per array), which should fit on any system but may not * be enough to tax larger HPC GPUs and MPI impelmentations. * * There will be four exchange buffers of size 2 * n_global, i.e. 128K each * by default. * * Gtensor is used so a single source can be used for all platforms. */ #include #include #include #include #include #include "gtensor/gtensor.h" #include "gtensor/reductions.h" using namespace gt::placeholders; const double PI = 3.141592653598793; inline void check(const char* fname, int line, int mpi_rval) { if (mpi_rval != MPI_SUCCESS) { printf("%s:%d error %d\n", fname, line, mpi_rval); exit(2); } } #define CHECK(x) check(__FILE__, __LINE__, (x)) // little hack to make code parameterizable on managed vs device memory namespace gt { namespace ext { namespace detail { template struct gthelper { using gtensor = gt::gtensor; }; #ifdef GTENSOR_HAVE_DEVICE template struct gthelper { using gtensor = gt::gtensor_container, N>; }; #endif } // namespace detail template using gtensor2 = typename detail::gthelper::gtensor; } // namespace ext } // namespace gt static const gt::gtensor stencil5 = {1.0 / 12.0, -2.0 / 3.0, 0.0, 2.0 / 3.0, -1.0 / 12.0}; /* * Return unevaluated expression that calculates the 1d stencil in the * first dimension of a 2d array. * * Size of the result will be size of z with minus 4 in second dimension. */ template inline auto stencil2d_1d_5_d0(const gt::ext::gtensor2& z, const gt::gtensor& stencil) { return stencil(0) * z.view(_s(0, -4), _all) + stencil(1) * z.view(_s(1, -3), _all) + stencil(2) * z.view(_s(2, -2), _all) + stencil(3) * z.view(_s(3, -1), _all) + stencil(4) * z.view(_s(4, _), _all); } /* * Return unevaluated expression that calculates the 1d stencil in the * second dimension of a 2d array. * * Size of the result will be size of z with minus 4 in second dimension. */ template inline auto stencil2d_1d_5_d1(const gt::ext::gtensor2& z, const gt::gtensor& stencil) { return stencil(0) * z.view(_all, _s(0, -4)) + stencil(1) * z.view(_all, _s(1, -3)) + stencil(2) * z.view(_all, _s(2, -2)) + stencil(3) * z.view(_all, _s(3, -1)) + stencil(4) * z.view(_all, _s(4, _)); } void set_rank_device(int n_ranks, int rank) { int n_devices, device, ranks_per_device; n_devices = gt::backend::clib::device_get_count(); if (n_ranks > n_devices) { if (n_ranks % n_devices != 0) { printf( "ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n", n_ranks, n_devices); exit(EXIT_FAILURE); } ranks_per_device = n_ranks / n_devices; device = rank / ranks_per_device; } else { ranks_per_device = 1; device = rank; } gt::backend::clib::device_set(device); } // exchange in first dimension, staging into contiguous buffers on device template void boundary_exchange_x(MPI_Comm comm, int world_size, int rank, gt::ext::gtensor2& d_z, int n_bnd, bool stage_host = false) { auto buf_shape = gt::shape(n_bnd, d_z.shape(1)); gt::gtensor_device sbuf_l(buf_shape); gt::gtensor_device sbuf_r(buf_shape); gt::gtensor_device rbuf_r(buf_shape); gt::gtensor_device rbuf_l(buf_shape); gt::shape_type<2> host_buf_shape; if (stage_host) { host_buf_shape = buf_shape; } else { host_buf_shape = {0, 0}; } gt::gtensor h_sbuf_l(host_buf_shape); gt::gtensor h_sbuf_r(host_buf_shape); gt::gtensor h_rbuf_r(host_buf_shape); gt::gtensor h_rbuf_l(host_buf_shape); MPI_Request req_l[2]; MPI_Request req_r[2]; int rank_l = rank - 1; int rank_r = rank + 1; // start async copy of ghost points into send buffers if (rank_l >= 0) { sbuf_l = d_z.view(_s(n_bnd, 2 * n_bnd), _all); if (stage_host) { gt::copy(sbuf_l, h_sbuf_l); } } if (rank_r <= world_size) { sbuf_r = d_z.view(_s(-2 * n_bnd, -n_bnd), _all); if (stage_host) { gt::copy(sbuf_r, h_sbuf_r); } } // initiate async recv if (rank_l >= 0) { double* rbuf_l_data = nullptr; if (stage_host) { rbuf_l_data = h_rbuf_l.data(); } else { rbuf_l_data = rbuf_l.data().get(); } CHECK(MPI_Irecv(rbuf_l_data, rbuf_l.size(), MPI_DOUBLE, rank_l, 123, comm, &req_l[0])); } if (rank_r < world_size) { double* rbuf_r_data = nullptr; if (stage_host) { rbuf_r_data = h_rbuf_r.data(); } else { rbuf_r_data = rbuf_r.data().get(); } CHECK(MPI_Irecv(rbuf_r_data, rbuf_r.size(), MPI_DOUBLE, rank_r, 456, comm, &req_r[0])); } // wait for send buffer fill gt::synchronize(); // initiate async sends if (rank_l >= 0) { double* sbuf_l_data = nullptr; if (stage_host) { sbuf_l_data = h_sbuf_l.data(); } else { sbuf_l_data = sbuf_l.data().get(); } CHECK(MPI_Isend(sbuf_l_data, sbuf_l.size(), MPI_DOUBLE, rank_l, 456, comm, &req_l[1])); } if (rank_r < world_size) { double* sbuf_r_data = nullptr; if (stage_host) { sbuf_r_data = h_sbuf_r.data(); } else { sbuf_r_data = sbuf_r.data().get(); } CHECK(MPI_Isend(sbuf_r_data, sbuf_r.size(), MPI_DOUBLE, rank_r, 123, comm, &req_r[1])); } // wait for send/recv to complete, then copy data back into main data array int mpi_rval; if (rank_l >= 0) { MPI_Status status[2]; mpi_rval = MPI_Waitall(2, req_l, status); if (mpi_rval != MPI_SUCCESS) { printf("send_l error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR, status[1].MPI_ERROR); } if (stage_host) { gt::copy(h_rbuf_l, rbuf_l); } d_z.view(_s(0, n_bnd), _all) = rbuf_l; } if (rank_r < world_size) { MPI_Status status[2]; mpi_rval = MPI_Waitall(2, req_r, status); if (mpi_rval != MPI_SUCCESS) { printf("send_r error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR, status[1].MPI_ERROR); } if (stage_host) { gt::copy(h_rbuf_r, rbuf_r); } d_z.view(_s(-n_bnd, _), _all) = rbuf_r; } gt::synchronize(); } // exchange in second dimension, optional staging into device buffer template void boundary_exchange_y(MPI_Comm comm, int world_size, int rank, gt::ext::gtensor2& d_z, int n_bnd, bool stage_device) { gt::shape_type<2> buf_shape; if (stage_device) { buf_shape = gt::shape(d_z.shape(0), n_bnd); } else { buf_shape = {0, 0}; } gt::gtensor_device sbuf_l(buf_shape); gt::gtensor_device sbuf_r(buf_shape); gt::gtensor_device rbuf_r(buf_shape); gt::gtensor_device rbuf_l(buf_shape); MPI_Request req_l[2]; MPI_Request req_r[2]; int rank_l = rank - 1; int rank_r = rank + 1; auto sv_l = gt::view_strided(d_z, _all, _s(n_bnd, 2 * n_bnd)); auto sv_r = gt::view_strided(d_z, _all, _s(-2 * n_bnd, -n_bnd)); auto rv_l = gt::view_strided(d_z, _all, _s(0, n_bnd)); auto rv_r = gt::view_strided(d_z, _all, _s(-n_bnd, _)); // start async copy of ghost points into send buffers if (stage_device) { if (rank_l >= 0) { sbuf_l = sv_l; } if (rank_r <= world_size) { sbuf_r = sv_r; } } // initiate async recv if (rank_l >= 0) { double* rbuf_l_data = nullptr; if (stage_device) { rbuf_l_data = rbuf_l.data().get(); } else { rbuf_l_data = rv_l.data().get(); } CHECK(MPI_Irecv(rbuf_l_data, rv_l.size(), MPI_DOUBLE, rank_l, 123, comm, &req_l[0])); } if (rank_r < world_size) { double* rbuf_r_data = nullptr; if (stage_device) { rbuf_r_data = rbuf_r.data().get(); } else { rbuf_r_data = rv_r.data().get(); } CHECK(MPI_Irecv(rbuf_r_data, rv_r.size(), MPI_DOUBLE, rank_r, 456, comm, &req_r[0])); } // wait for send buffer fill // if (stage_device) { gt::synchronize(); // } // initiate async sends if (rank_l >= 0) { double* sbuf_l_data = nullptr; if (stage_device) { sbuf_l_data = sbuf_l.data().get(); } else { sbuf_l_data = sv_l.data().get(); } CHECK(MPI_Isend(sbuf_l_data, sv_l.size(), MPI_DOUBLE, rank_l, 456, comm, &req_l[1])); } if (rank_r < world_size) { double* sbuf_r_data = nullptr; if (stage_device) { sbuf_r_data = sbuf_r.data().get(); } else { sbuf_r_data = sv_r.data().get(); } CHECK(MPI_Isend(sbuf_r_data, sv_r.size(), MPI_DOUBLE, rank_r, 123, comm, &req_r[1])); } // wait for send/recv to complete, then copy data back into main data array int mpi_rval; if (rank_l >= 0) { MPI_Status status[2]; mpi_rval = MPI_Waitall(2, req_l, status); if (mpi_rval != MPI_SUCCESS) { printf("send_l error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR, status[1].MPI_ERROR); } if (stage_device) { gt::copy(rbuf_l, rv_l); } } if (rank_r < world_size) { MPI_Status status[2]; mpi_rval = MPI_Waitall(2, req_r, status); if (mpi_rval != MPI_SUCCESS) { printf("send_r error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR, status[1].MPI_ERROR); } if (stage_device) { gt::copy(rbuf_r, rv_r); } } gt::synchronize(); } template void print_test_name(bool use_buffers) { if constexpr (std::is_same::value) { printf("TEST dim:%d, device , buf:%d", Dim, use_buffers); } else { printf("TEST dim:%d, managed, buf:%d", Dim, use_buffers); } } template void test_deriv(int device_id, uint32_t vendor_id, int world_size, int world_rank, int n_global, int n_iter, bool use_buffers, int n_warmup = 5) { // Note: domain will be n_global x n_global plus ghost points in one dimension int n_sten = 5; int n_bnd = (n_sten - 1) / 2; const int n_local = n_global / world_size; int nx_local, ny_local; int nx_local_ghost, ny_local_ghost; int nx_bnd, ny_bnd; if constexpr (Dim == 0) { nx_bnd = n_bnd; ny_bnd = 0; nx_local = n_local; nx_local_ghost = n_local + 2 * n_bnd; ny_local = n_global; ny_local_ghost = n_global; } else { nx_bnd = 0; ny_bnd = n_bnd; nx_local = n_global; nx_local_ghost = n_global; ny_local = n_local; ny_local_ghost = n_local + 2 * n_bnd; } gt::shape_type<2> z_shape(nx_local_ghost, ny_local_ghost); gt::shape_type<2> dz_shape(nx_local, ny_local); auto h_z = gt::empty(z_shape); gt::ext::gtensor2 d_z(z_shape); auto h_dz_numeric = gt::empty(dz_shape); auto h_dz_actual = gt::empty(dz_shape); gt::ext::gtensor2 d_dz_numeric(dz_shape); double ln = 8; double delta = ln / n_global; double ln_local = ln / world_size; double scale = n_global / ln; auto fn = [](double x, double y) { return x * x * x + y * y; }; auto fn_dzdx = [](double x, double y) { return 3 * x * x; }; auto fn_dzdy = [](double x, double y) { return 2 * y; }; struct timespec start, end; double iter_time = 0.0; double total_time = 0.0; double x_start = 0, y_start = 0; if constexpr (Dim == 0) { x_start = world_rank * ln_local; } else { y_start = world_rank * ln_local; } for (int j = 0; j < ny_local; j++) { double ytmp = y_start + j * delta; for (int i = 0; i < nx_local; i++) { double xtmp = x_start + i * delta; h_z(i + nx_bnd, j + ny_bnd) = fn(xtmp, ytmp); if constexpr (Dim == 0) { h_dz_actual(i, j) = fn_dzdx(xtmp, ytmp); } else { h_dz_actual(i, j) = fn_dzdy(xtmp, ytmp); } } } // fill boundary points on ends if constexpr (Dim == 0) { if (world_rank == 0) { for (int j = 0; j < ny_local; j++) { double ytmp = j * delta; for (int i = 0; i < nx_bnd; i++) { double xtmp = (i - nx_bnd) * delta; h_z(i, j) = fn(xtmp, ytmp); } } } if (world_rank == world_size - 1) { for (int j = 0; j < ny_local; j++) { double ytmp = j * delta; for (int i = 0; i < nx_bnd; i++) { double xtmp = ln + i * delta; h_z(nx_bnd + nx_local + i, j) = fn(xtmp, ytmp); } } } } else { if (world_rank == 0) { for (int j = 0; j < ny_bnd; j++) { double ytmp = (j - ny_bnd) * delta; for (int i = 0; i < nx_local; i++) { double xtmp = i * delta; h_z(i, j) = fn(xtmp, ytmp); } } } if (world_rank == world_size - 1) { for (int j = 0; j < ny_bnd; j++) { double ytmp = ln + j * delta; for (int i = 0; i < nx_local; i++) { double xtmp = i * delta; h_z(i, ny_bnd + ny_local + j) = fn(xtmp, ytmp); } } } } /* for (int i = 0; i < 5; i++) { printf("%d row1-l %f\n", world_rank, h_z(1, i)); } for (int i = 0; i < 5; i++) { printf("%d row1-r %f\n", world_rank, h_z(1, n_local_with_ghost - 1 - i)); } */ gt::copy(h_z, d_z); // gt::synchronize(); for (int i = 0; i < n_warmup + n_iter; i++) { clock_gettime(CLOCK_MONOTONIC, &start); if constexpr (Dim == 0) { boundary_exchange_x(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd, use_buffers); } else { boundary_exchange_y(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd, use_buffers); } clock_gettime(CLOCK_MONOTONIC, &end); iter_time = ((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9); if (i >= n_warmup) { total_time += iter_time; } // do some calculation, to try to more closely simulate what happens in GENE if constexpr (Dim == 0) { d_dz_numeric = stencil2d_1d_5_d0(d_z, stencil5) * scale; } else { d_dz_numeric = stencil2d_1d_5_d1(d_z, stencil5) * scale; } gt::synchronize(); } #ifdef DEBUG printf("%d/%d exchange time %0.8f ms\n", world_rank, world_size, total_time / n_iter * 1000); #endif gt::copy(d_dz_numeric, h_dz_numeric); /* for (int i = 0; i < 5; i++) { printf("%d la %f\n%d ln %f\n", world_rank, h_dzdx_actual(8, i), world_rank, h_dzdx_numeric(8, i)); } for (int i = 0; i < 5; i++) { int idx = n_local - 1 - i; printf("%d ra %f\n%d rn %f\n", world_rank, h_dzdx_actual(8, idx), world_rank, h_dzdx_numeric(8, idx)); } */ double err_norm = std::sqrt(gt::sum_squares(h_dz_numeric - h_dz_actual)); #ifdef DEBUG printf("%d/%d [%d:0x%08x] err_norm = %.8f\n", world_rank, world_size, device_id, vendor_id, err_norm); #endif double time_sum; MPI_Reduce(&total_time, &time_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); double err_sum; MPI_Reduce(&err_norm, &err_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (world_rank == 0) { print_test_name(use_buffers); printf("; %0.8f, err=%0.8f\n", time_sum, err_sum); } } template void test_sum(int device_id, uint32_t vendor_id, int world_size, int world_rank, int n_global, int n_iter, int n_warmup = 5) { // Note: domain will be n_global x n_global plus ghost points in one dimension const int n_local = n_global / world_size; int nx_local, ny_local; struct timespec start, end; double iter_time = 0.0; double total_time = 0.0; if constexpr (Dim == 0) { nx_local = n_local; ny_local = n_global; } else { nx_local = n_global; ny_local = n_local; } gt::shape_type<2> z_shape(nx_local, ny_local); gt::ext::gtensor2 d_z(z_shape, PI / world_size); // reduction test gt::shape_type<1> sum_shape; if constexpr (Dim == 0) { sum_shape = gt::shape(d_z.shape(0)); } else { sum_shape = gt::shape(d_z.shape(1)); } gt::ext::gtensor2 d_sum(sum_shape); gt::gtensor h_sum(sum_shape); for (int i = 0; i < n_warmup + n_iter; i++) { if constexpr (Dim == 0) { gt::sum_axis_to(d_sum, d_z, 0); gt::synchronize(); clock_gettime(CLOCK_MONOTONIC, &start); CHECK(MPI_Allreduce(MPI_IN_PLACE, d_sum.data().get(), d_sum.size(), MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD)); clock_gettime(CLOCK_MONOTONIC, &end); } else { gt::sum_axis_to(d_sum, d_z, 1); gt::synchronize(); clock_gettime(CLOCK_MONOTONIC, &start); CHECK(MPI_Allreduce(MPI_IN_PLACE, d_sum.data().get(), d_sum.size(), MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD)); clock_gettime(CLOCK_MONOTONIC, &end); } iter_time = ((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9); if (i >= n_warmup) { total_time += iter_time; } } #ifdef DEBUG printf("%d/%d allreduce time %0.8f ms\n", world_rank, world_size, total_time / n_iter * 1000); #endif gt::copy(d_sum, h_sum); double time_sum; MPI_Reduce(&total_time, &time_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (world_rank == 0) { print_test_name(false); printf("; allreduce=%0.8f\n", time_sum); } } int main(int argc, char** argv) { using S = gt::space::managed; // Note: domain will be n_global x n_global plus ghost points in one dimension int n_global = 8 * 1024; int n_iter = 1000; int n_warmup = 10; if (argc > 1) { n_global = std::atoi(argv[1]) * 1024; } if (argc > 2) { n_iter = std::atoi(argv[2]); } int world_size, world_rank, device_id; uint32_t vendor_id; CHECK(MPI_Init(NULL, NULL)); CHECK(MPI_Comm_size(MPI_COMM_WORLD, &world_size)); CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &world_rank)); if (n_global % world_size != 0) { printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n", world_rank, world_size, n_global); exit(1); } const int n_local = n_global / world_size; set_rank_device(world_size, world_rank); device_id = gt::backend::clib::device_get(); vendor_id = gt::backend::clib::device_get_vendor_id(device_id); if (world_rank == 0) { printf("n procs = %d\n", world_size); printf("n_global = %d\n", n_global); printf("n_local = %d\n", n_local); printf("n_iter = %d\n", n_iter); printf("n_warmup = %d\n", n_warmup); } fflush(stdout); test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5); test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5); #ifdef TEST_MANAGED test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5); test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5); #endif test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5); test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5); #ifdef TEST_MANAGED test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5); test_deriv(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5); #endif test_sum(device_id, vendor_id, world_size, world_rank, n_global, n_iter, 5); #ifdef TEST_MANAGED test_sum(device_id, vendor_id, world_size, world_rank, n_global, n_iter, 5); #endif test_sum(device_id, vendor_id, world_size, world_rank, n_global, n_iter, 5); #ifdef TEST_MANAGED test_sum(device_id, vendor_id, world_size, world_rank, n_global, n_iter, 5); #endif MPI_Finalize(); return EXIT_SUCCESS; }