/* * Test GPU aware MPI on different platforms using a distributed * 1d stencil on a 2d array. The exchange in second (non-contiguous) * direction forces use of staging buffers, which replicates what * is needed for all but the innermost dimension exchanges in the * GENE fusion code. * * Takes optional command line arg for size of each dimension of the domain * n_global, in 1024 increments. Default is 8 * 1024 (so 256K plus ghost points * in size for doulbles per array), which should fit on any system but may not * be enough to tax larger HPC GPUs and MPI impelmentations. * * There will be four exchange buffers of size 2 * n_global, i.e. 128K each * by default. */ #include #include #include #include #include #include #include #include "sycl/sycl.hpp" inline void check(const char* fname, int line, int mpi_rval) { if (mpi_rval != MPI_SUCCESS) { printf("%s:%d error %d\n", fname, line, mpi_rval); exit(2); } } #define CHECK(x) check(__FILE__, __LINE__, (x)) static constexpr double stencil5[] = {1.0 / 12.0, -2.0 / 3.0, 0.0, 2.0 / 3.0, -1.0 / 12.0}; inline constexpr std::size_t idx2(int n, int row, int col) { return row + col * n; } /* * Calculate 1d stencil of second dimension of 2d array on GPU. Out array must * be contiguous column major nrows x ncols array, while in array must be * (nrows)x(ncols+4) to accomodate 2 ghost points in each direction for the * second dimension. * * Returns sycl event, async with respect to host. */ auto stencil2d_1d_5(sycl::queue& q, int out_nrows, int out_ncols, double* out2d, const double* in2d, double scale) { // Note: swap index order; SYCL is row-major oriented, and this example // is col-major int in_nrows = out_nrows + 4; auto range = sycl::range<2>(out_ncols, out_nrows); auto e = q.submit([&](sycl::handler& cgh) { cgh.parallel_for(range, [=](sycl::item<2> item) { int row = item.get_id(1); int col = item.get_id(0); int out_idx = idx2(out_nrows, row, col); int in_base_idx = idx2(in_nrows, row, col); out2d[out_idx] = (stencil5[0] * in2d[in_base_idx + 0] + stencil5[1] * in2d[in_base_idx + 1] + stencil5[2] * in2d[in_base_idx + 2] + stencil5[3] * in2d[in_base_idx + 3] + stencil5[4] * in2d[in_base_idx + 4]) * scale; }); }); return e; } /* * Copy slice of first dimension of in array into contiguous * buffer out. In has dimension nrows x ncols, buf has dimension (end - start) x * ncols. */ auto buf_from_view(sycl::queue& q, int ncols, int buf_nrows, double* buf, int in_nrows, double* in, int start, int end) { assert(buf_nrows >= end - start); // Note: reverse index order because SYCL is row-major auto range = sycl::range<2>(ncols, end - start); auto e = q.submit([&](sycl::handler& cgh) { cgh.parallel_for(range, [=](sycl::item<2> item) { int row = item.get_id(1); int col = item.get_id(0); buf[idx2(buf_nrows, row, col)] = in[idx2(in_nrows, start + row, col)]; }); }); return e; } /* * Copy contiguous buffer into first dimension of array as a slice. Out has * dimension nrows x ncols, buf has dimension (end - start) * ncols. */ auto buf_to_view(sycl::queue& q, int ncols, int out_nrows, double* out, int buf_nrows, double* buf, int start, int end) { assert(buf_nrows >= end - start); // Note: reverse index order because SYCL is row-major auto range = sycl::range<2>(ncols, end - start); auto e = q.submit([&](sycl::handler& cgh) { cgh.parallel_for(range, [=](sycl::item<2> item) { int row = item.get_id(1); int col = item.get_id(0); out[idx2(out_nrows, start + row, col)] = buf[idx2(buf_nrows, row, col)]; }); }); return e; } void test_buf_view(sycl::queue& q, const int n) { int n_bnd = 2; int n_with_ghost = n + 2 * n_bnd; double* data = sycl::malloc_host(n_with_ghost * n, q); double* buf = sycl::malloc_host(n_bnd * n, q); double* buf2 = sycl::malloc_host(n_bnd * n, q); for (int j = 0; j < n; j++) { for (int i = 0; i < n_with_ghost; i++) { data[idx2(n_with_ghost, i, j)] = (i - n_bnd) + j / 1000.0; } buf2[idx2(n_bnd, 0, j)] = 100.0 + j; buf2[idx2(n_bnd, 1, j)] = 100.0 + j + 0.1; } for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { printf("data[%d, %d] = %f\n", i, j, data[idx2(n_with_ghost, i, j)]); } } for (int j = 0; j < n; j++) { for (int i = 0; i < n_bnd; i++) { printf("buf2[%d, %d] = %f\n", i, j, buf2[idx2(n_bnd, i, j)]); } } buf_from_view(q, n, n_bnd, buf, n_with_ghost, data, 0, n_bnd).wait(); for (int j = 0; j < n; j++) { for (int i = 0; i < n_bnd; i++) { printf("buf[%d, %d] = %f\n", i, j, buf[idx2(n_bnd, i, j)]); } } buf_to_view(q, n, n_with_ghost, data, n_bnd, buf2, n - n_bnd, n).wait(); for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { printf("data[%d, %d] = %f\n", i, j, data[idx2(n_with_ghost, i, j)]); } } } /* * Calculate the norm of the difference of two arrays, as sqrt of sum of * squared distances. */ double diff_norm(sycl::queue& q, int size, double* d_a, double* d_b) { double result = 0.0; sycl::buffer result_buf{&result, 1}; { sycl::range<1> range(size); auto e = q.submit([&](sycl::handler& cgh) { auto reducer = sycl::reduction(result_buf, cgh, 0.0, std::plus<>{}); cgh.parallel_for(range, reducer, [=](sycl::id<1> idx, auto& r) { double diff = d_a[idx] - d_b[idx]; r.combine(diff * diff); }); }); e.wait(); } return std::sqrt(result_buf.get_host_access()[0]); } sycl::queue get_rank_queue(int n_ranks, int rank) { int n_devices, device_idx, ranks_per_device; sycl::platform p{sycl::default_selector_v}; auto devices = p.get_devices(); n_devices = devices.size(); if (n_ranks > n_devices) { if (n_ranks % n_devices != 0) { printf( "ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n", n_ranks, n_devices); exit(EXIT_FAILURE); } ranks_per_device = n_ranks / n_devices; device_idx = rank / ranks_per_device; } else { ranks_per_device = 1; device_idx = rank; } // printf("n_devices = %d\n", n_devices); // printf("device_idx = %d\n", device_idx); return sycl::queue{devices[device_idx], sycl::property::queue::in_order()}; } // exchange in first dimension, staging into contiguous buffers on device void boundary_exchange_x(MPI_Comm comm, int world_size, int rank, sycl::queue& q, int n_global, int n_local, int n_bnd, double* d_z, bool stage_host = false) { int n_local_with_ghost = n_local + 2 * n_bnd; int buf_size = n_bnd * n_global; static double* sbuf_l = nullptr; static double* sbuf_r = nullptr; static double* rbuf_l = nullptr; static double* rbuf_r = nullptr; if (sbuf_l == nullptr) { sbuf_l = sycl::malloc_device(buf_size, q); sbuf_r = sycl::malloc_device(buf_size, q); rbuf_l = sycl::malloc_device(buf_size, q); rbuf_r = sycl::malloc_device(buf_size, q); } static double* h_sbuf_l = nullptr; static double* h_sbuf_r = nullptr; static double* h_rbuf_l = nullptr; static double* h_rbuf_r = nullptr; if (stage_host && h_sbuf_l == nullptr) { h_sbuf_l = sycl::malloc_host(buf_size, q); h_sbuf_r = sycl::malloc_host(buf_size, q); h_rbuf_l = sycl::malloc_host(buf_size, q); h_rbuf_r = sycl::malloc_host(buf_size, q); } MPI_Request req_l[2]; MPI_Request req_r[2]; int rank_l = rank - 1; int rank_r = rank + 1; // start async copy of ghost points into send buffers if (rank_l >= 0) { // printf("rank_l = %d\n", rank_l); fflush(nullptr); // sbuf_l = d_z.view(_all, _s(n_bnd, 2 * n_bnd)); auto e = buf_from_view(q, n_global, n_bnd, sbuf_l, n_local_with_ghost, d_z, n_bnd, 2 * n_bnd); if (stage_host) { q.copy(sbuf_l, h_sbuf_l, buf_size, e); /* for (int i = 0; i < n_bnd; i++) { for (int j = 0; j < n_global; j++) { int idx = idx2(n_global, j, i); printf("sbuf_l[%d, %d] = %f\n", j, i, h_sbuf_l[idx]); fflush(nullptr); } } */ } } if (rank_r < world_size) { // printf("rank_r = %d\n", rank_r); fflush(nullptr); // sbuf_r = d_z.view(_all, _s(-2 * n_bnd, -n_bnd)); auto e = buf_from_view(q, n_global, n_bnd, sbuf_r, n_local_with_ghost, d_z, n_local, n_local + n_bnd); if (stage_host) { q.copy(sbuf_r, h_sbuf_r, buf_size, e); /* for (int i = 0; i < n_bnd; i++) { for (int j = 0; j < n_global; j++) { int idx = idx2(n_global, j, i); printf("sbuf_r[%d, %d] = %f\n", j, i, h_sbuf_r[idx]); fflush(nullptr); } } */ } } // initiate async recv if (rank_l >= 0) { double* rbuf_l_data = nullptr; if (stage_host) { rbuf_l_data = h_rbuf_l; } else { rbuf_l_data = rbuf_l; } MPI_Irecv(rbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 123, comm, &req_l[0]); } if (rank_r < world_size) { double* rbuf_r_data = nullptr; if (stage_host) { rbuf_r_data = h_rbuf_r; } else { rbuf_r_data = rbuf_r; } MPI_Irecv(rbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 456, comm, &req_r[0]); } // wait for send buffer fill q.wait(); // initiate async sends if (rank_l >= 0) { double* sbuf_l_data = nullptr; if (stage_host) { sbuf_l_data = h_sbuf_l; } else { sbuf_l_data = sbuf_l; } MPI_Isend(sbuf_l_data, buf_size, MPI_DOUBLE, rank_l, 456, comm, &req_l[1]); } if (rank_r < world_size) { double* sbuf_r_data = nullptr; if (stage_host) { sbuf_r_data = h_sbuf_r; } else { sbuf_r_data = sbuf_r; } MPI_Isend(sbuf_r_data, buf_size, MPI_DOUBLE, rank_r, 123, comm, &req_r[1]); } // wait for send/recv to complete, then copy data back into main data array int mpi_rval; if (rank_l >= 0) { mpi_rval = MPI_Waitall(2, req_l, MPI_STATUSES_IGNORE); if (mpi_rval != MPI_SUCCESS) { printf("send_l error: %d\n", mpi_rval); } if (stage_host) { /* for (int i = 0; i < n_bnd; i++) { for (int j = 0; j < n_global; j++) { int idx = idx2(n_global, j, i); printf("rbuf_l[%d, %d] = %f\n", j, i, h_rbuf_l[idx]); fflush(nullptr); } } */ q.copy(h_rbuf_l, rbuf_l, buf_size); } // d_z.view(_all, _s(0, n_bnd)) = rbuf_l; buf_to_view(q, n_global, n_local_with_ghost, d_z, n_bnd, rbuf_l, 0, n_bnd); } if (rank_r < world_size) { mpi_rval = MPI_Waitall(2, req_r, MPI_STATUSES_IGNORE); if (mpi_rval != MPI_SUCCESS) { printf("send_r error: %d\n", mpi_rval); } if (stage_host) { /* for (int i = 0; i < n_bnd; i++) { for (int j = 0; j < n_global; j++) { int idx = idx2(n_global, j, i); printf("rbuf_r[%d, %d] = %f\n", j, i, h_rbuf_r[idx]); fflush(nullptr); } } */ q.copy(h_rbuf_r, rbuf_r, buf_size); } // d_z.view(_all, _s(-n_bnd, _)) = rbuf_r; buf_to_view(q, n_global, n_local_with_ghost, d_z, n_bnd, rbuf_r, n_local + n_bnd, n_local + 2 * n_bnd); } q.wait(); } int main(int argc, char** argv) { // sycl::queue q2{}; // test_buf_view(q2, 6); // return EXIT_SUCCESS; // Note: domain will be n_global x n_global plus ghost points in one dimension int n_global = 8 * 1024; bool stage_host = false; int n_iter = 100; int n_warmup = 5; if (argc > 1) { n_global = std::atoi(argv[1]) * 1024; } if (argc > 2) { if (argv[2][0] == '1') { stage_host = true; } } if (argc > 3) { n_iter = std::atoi(argv[3]); } int n_sten = 5; int n_bnd = (n_sten - 1) / 2; int world_size, world_rank, device_id; uint32_t vendor_id; MPI_Init(NULL, NULL); MPI_Comm_size(MPI_COMM_WORLD, &world_size); MPI_Comm_rank(MPI_COMM_WORLD, &world_rank); if (n_global % world_size != 0) { printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n", world_rank, world_size, n_global); exit(1); } const int n_local = n_global / world_size; const int n_local_with_ghost = n_local + 2 * n_bnd; sycl::queue q = get_rank_queue(world_size, world_rank); auto dev = q.get_device(); if (dev.has(sycl::aspect::ext_intel_pci_address)) { auto BDF = dev.get_info(); auto UUID = dev.get_info(); uint32_t uuid_first = UUID[3] | (UUID[2] << 8) | (UUID[1] << 16) | (UUID[0] << 24); std::cout << world_rank << " " << BDF << "(" << std::hex << uuid_first << ")" << std::endl; } if (world_rank == 0) { printf("n procs = %d\n", world_size); printf("rank = %d\n", world_rank); printf("n_global = %d\n", n_global); printf("n_local = %d\n", n_local); printf("n_iter = %d\n", n_iter); printf("n_warmup = %d\n", n_warmup); printf("stage_host = %d\n", stage_host); } int z_size = n_local_with_ghost * n_global; int dzdx_size = n_local * n_global; double* h_z = sycl::malloc_host(z_size, q); double* d_z = sycl::malloc_device(z_size, q); double* h_dzdx_numeric = sycl::malloc_host(dzdx_size, q); double* h_dzdx_actual = sycl::malloc_host(dzdx_size, q); double* d_dzdx_numeric = sycl::malloc_device(dzdx_size, q); double lx = 8; double dx = lx / n_global; double lx_local = lx / world_size; double scale = n_global / lx; auto fn = [](double x, double y) { return x * x * x + y * y; }; auto fn_dzdx = [](double x, double y) { return 3 * x * x; }; struct timespec start, end; double iter_time = 0.0; double total_time = 0.0; double x_start = world_rank * lx_local; for (int j = 0; j < n_global; j++) { double ytmp = j * dx; for (int i = 0; i < n_local; i++) { double xtmp = x_start + i * dx; h_z[idx2(n_local_with_ghost, i + n_bnd, j)] = fn(xtmp, ytmp); h_dzdx_actual[idx2(n_local, i, j)] = fn_dzdx(xtmp, ytmp); } } // fill boundary points on ends if (world_rank == 0) { for (int j = 0; j < n_global; j++) { double ytmp = j * dx; for (int i = 0; i < n_bnd; i++) { double xtmp = (i - n_bnd) * dx; h_z[idx2(n_local_with_ghost, i, j)] = fn(xtmp, ytmp); } } } if (world_rank == world_size - 1) { for (int j = 0; j < n_global; j++) { double ytmp = j * dx; for (int i = 0; i < n_bnd; i++) { double xtmp = lx + i * dx; h_z[idx2(n_local_with_ghost, n_bnd + n_local + i, j)] = fn(xtmp, ytmp); } } } /* for (int i = 0; i < 5; i++) { int idx = idx2(n_global, 1, i); printf("%d row1-l %f\n", world_rank, h_z[idx]); } for (int i = 0; i < 5; i++) { int idx = idx2(n_global, 1, n_local_with_ghost - 1 - i); printf("%d row1-r %f\n", world_rank, h_z[idx]); } */ q.copy(h_z, d_z, z_size); for (int i = 0; i < n_warmup + n_iter; i++) { clock_gettime(CLOCK_MONOTONIC, &start); boundary_exchange_x(MPI_COMM_WORLD, world_size, world_rank, q, n_global, n_local, n_bnd, d_z, stage_host); clock_gettime(CLOCK_MONOTONIC, &end); iter_time = ((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9); if (i >= n_warmup) { total_time += iter_time; } // do some calculation, to try to more closely simulate what happens in GENE auto e = stencil2d_1d_5(q, n_local, n_global, d_dzdx_numeric, d_z, scale); e.wait(); } printf("%d/%d exchange time %0.8f ms\n", world_rank, world_size, total_time / n_iter * 1000); q.copy(d_dzdx_numeric, h_dzdx_numeric, dzdx_size).wait(); /* for (int i = 0; i < 5; i++) { int idx = idx2(n_global, 8, i); printf("%d la %f\n%d ln %f\n", world_rank, h_dzdx_actual[idx], world_rank, h_dzdx_numeric[idx]); } for (int i = 0; i < 5; i++) { int idx = idx2(n_global, 8, n_local - 1 - i); printf("%d ra %f\n%d rn %f\n", world_rank, h_dzdx_actual[idx], world_rank, h_dzdx_numeric[idx]); } */ double err_norm = diff_norm(q, dzdx_size, h_dzdx_numeric, h_dzdx_actual); printf("%d/%d [%d:0x%08x] err_norm = %.8f\n", world_rank, world_size, device_id, vendor_id, err_norm); MPI_Finalize(); return EXIT_SUCCESS; }