Compare commits

...

8 Commits

Author SHA1 Message Date
Bryce Allen
b61b9c8f6c gt: link gtl on cray amd systems, more iters
Option to disable managed tests, TEST_MANAGED=OFF cmake var
2023-04-28 14:23:32 -04:00
Bryce Allen
04652c0059 gt: add MPI_Allreduce test 2023-03-25 17:36:48 -07:00
Bryce Allen
b00d52af2a gt: fix dim1 nobuff 2023-03-25 13:48:40 -07:00
Bryce Allen
a885062c83 gt: mpi sum err and time, enable all 2023-03-25 15:12:53 -05:00
Bryce Allen
84deab6ced gt: don't use circular exchange for y deriv 2023-03-25 12:58:11 -07:00
Bryce Allen
7967991bd9 cmake: updates for gt stencil2d 2023-03-25 10:53:50 -07:00
Bryce Allen
02ab50ab60 gt: WIP y (outer) dim test 2023-03-25 10:53:12 -07:00
Bryce Allen
5bcf1382ba gt: parameterize space 2023-03-24 14:58:14 -07:00
2 changed files with 447 additions and 85 deletions

View File

@@ -3,6 +3,8 @@ cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
# create project # create project
project(mpi-daxpy-test) project(mpi-daxpy-test)
option(TEST_MANAGED "Test managed memory" ON)
# add dependencies # add dependencies
include(cmake/CPM.cmake) include(cmake/CPM.cmake)
CPMFindPackage(NAME gtensor CPMFindPackage(NAME gtensor
@@ -10,26 +12,41 @@ CPMFindPackage(NAME gtensor
GIT_TAG "main" GIT_TAG "main"
OPTIONS "GTENSOR_ENABLE_BLAS ON") OPTIONS "GTENSOR_ENABLE_BLAS ON")
set(MPI_CXX_SKIP_MPICXX ON)
find_package(MPI REQUIRED) find_package(MPI REQUIRED)
if ("${GTENSOR_DEVICE}" STREQUAL "cuda")
enable_language(CUDA)
endif()
add_executable(mpi_daxpy_gt) add_executable(mpi_daxpy_gt)
target_sources(mpi_daxpy_gt PRIVATE mpi_daxpy_gt.cc) target_sources(mpi_daxpy_gt PRIVATE mpi_daxpy_gt.cc)
target_link_libraries(mpi_daxpy_gt gtensor::gtensor) target_link_libraries(mpi_daxpy_gt PRIVATE gtensor::gtensor)
target_link_libraries(mpi_daxpy_gt gtensor::blas) target_link_libraries(mpi_daxpy_gt PRIVATE gtensor::blas)
target_link_libraries(mpi_daxpy_gt MPI::MPI_CXX) target_link_libraries(mpi_daxpy_gt PRIVATE MPI::MPI_CXX)
add_executable(mpi_stencil_gt) add_executable(mpi_stencil_gt)
target_sources(mpi_stencil_gt PRIVATE mpi_stencil_gt.cc) target_sources(mpi_stencil_gt PRIVATE mpi_stencil_gt.cc)
target_link_libraries(mpi_stencil_gt gtensor::gtensor) target_link_libraries(mpi_stencil_gt PRIVATE gtensor::gtensor)
target_link_libraries(mpi_stencil_gt MPI::MPI_CXX) target_link_libraries(mpi_stencil_gt PRIVATE MPI::MPI_CXX)
add_executable(mpi_stencil2d_gt) add_executable(mpi_stencil2d_gt)
target_sources(mpi_stencil2d_gt PRIVATE mpi_stencil2d_gt.cc) target_sources(mpi_stencil2d_gt PRIVATE mpi_stencil2d_gt.cc)
target_link_libraries(mpi_stencil2d_gt gtensor::gtensor) target_link_libraries(mpi_stencil2d_gt PRIVATE gtensor::gtensor)
target_link_libraries(mpi_stencil2d_gt MPI::MPI_CXX) target_link_libraries(mpi_stencil2d_gt PRIVATE MPI::MPI_CXX)
#target_compile_features(mpi_stencil2d_gt PRIVATE cxx_std_17)
if (TEST_MANAGED)
message(STATUS "${PROJECT_NAME}: Enabling managed memory")
target_compile_definitions(mpi_stencil2d_gt PRIVATE TEST_MANAGED)
endif()
if (GTENSOR_DEVICE STREQUAL "hip" AND DEFINED ENV{PE_MPICH_GTL_DIR_amd_gfx90a})
message(STATUS "${PROJECT_NAME}: Linking gtl libs for HIP backend")
target_link_options(mpi_stencil2d_gt PRIVATE
$ENV{PE_MPICH_GTL_DIR_amd_gfx90a}
$ENV{PE_MPICH_GTL_LIBS_amd_gfx90a})
endif()
if ("${GTENSOR_DEVICE}" STREQUAL "cuda") if ("${GTENSOR_DEVICE}" STREQUAL "cuda")
enable_language(CUDA)
set_source_files_properties(mpi_daxpy_gt.cc set_source_files_properties(mpi_daxpy_gt.cc
TARGET_DIRECTORY mpi_daxpy_gt TARGET_DIRECTORY mpi_daxpy_gt
PROPERTIES LANGUAGE CUDA) PROPERTIES LANGUAGE CUDA)
@@ -37,7 +54,7 @@ if ("${GTENSOR_DEVICE}" STREQUAL "cuda")
TARGET_DIRECTORY mpi_stencil_gt TARGET_DIRECTORY mpi_stencil_gt
PROPERTIES LANGUAGE CUDA) PROPERTIES LANGUAGE CUDA)
set_source_files_properties(mpi_stencil2d_gt.cc set_source_files_properties(mpi_stencil2d_gt.cc
TARGET_DIRECTORY mpi_stencil_gt TARGET_DIRECTORY mpi_stencil2d_gt
PROPERTIES LANGUAGE CUDA) PROPERTIES LANGUAGE CUDA)
else() else()
set_source_files_properties(mpi_daxpy_gt.cc set_source_files_properties(mpi_daxpy_gt.cc
@@ -47,7 +64,7 @@ else()
TARGET_DIRECTORY mpi_stencil_gt TARGET_DIRECTORY mpi_stencil_gt
PROPERTIES LANGUAGE CXX) PROPERTIES LANGUAGE CXX)
set_source_files_properties(mpi_stencil2d_gt.cc set_source_files_properties(mpi_stencil2d_gt.cc
TARGET_DIRECTORY mpi_stencil_gt TARGET_DIRECTORY mpi_stencil2d_gt
PROPERTIES LANGUAGE CXX) PROPERTIES LANGUAGE CXX)
endif() endif()

View File

@@ -27,6 +27,8 @@
using namespace gt::placeholders; using namespace gt::placeholders;
const double PI = 3.141592653598793;
inline void check(const char* fname, int line, int mpi_rval) inline void check(const char* fname, int line, int mpi_rval)
{ {
if (mpi_rval != MPI_SUCCESS) { if (mpi_rval != MPI_SUCCESS) {
@@ -79,8 +81,9 @@ static const gt::gtensor<double, 1> stencil5 = {1.0 / 12.0, -2.0 / 3.0, 0.0,
* *
* Size of the result will be size of z with minus 4 in second dimension. * Size of the result will be size of z with minus 4 in second dimension.
*/ */
inline auto stencil2d_1d_5(const gt::gtensor_device<double, 2>& z, template <typename S>
const gt::gtensor<double, 1>& stencil) inline auto stencil2d_1d_5_d0(const gt::ext::gtensor2<double, 2, S>& z,
const gt::gtensor<double, 1>& stencil)
{ {
return stencil(0) * z.view(_s(0, -4), _all) + return stencil(0) * z.view(_s(0, -4), _all) +
stencil(1) * z.view(_s(1, -3), _all) + stencil(1) * z.view(_s(1, -3), _all) +
@@ -89,6 +92,23 @@ inline auto stencil2d_1d_5(const gt::gtensor_device<double, 2>& z,
stencil(4) * z.view(_s(4, _), _all); stencil(4) * z.view(_s(4, _), _all);
} }
/*
* Return unevaluated expression that calculates the 1d stencil in the
* second dimension of a 2d array.
*
* Size of the result will be size of z with minus 4 in second dimension.
*/
template <typename S>
inline auto stencil2d_1d_5_d1(const gt::ext::gtensor2<double, 2, S>& z,
const gt::gtensor<double, 1>& stencil)
{
return stencil(0) * z.view(_all, _s(0, -4)) +
stencil(1) * z.view(_all, _s(1, -3)) +
stencil(2) * z.view(_all, _s(2, -2)) +
stencil(3) * z.view(_all, _s(3, -1)) +
stencil(4) * z.view(_all, _s(4, _));
}
void set_rank_device(int n_ranks, int rank) void set_rank_device(int n_ranks, int rank)
{ {
int n_devices, device, ranks_per_device; int n_devices, device, ranks_per_device;
@@ -113,8 +133,9 @@ void set_rank_device(int n_ranks, int rank)
} }
// exchange in first dimension, staging into contiguous buffers on device // exchange in first dimension, staging into contiguous buffers on device
template <typename S>
void boundary_exchange_x(MPI_Comm comm, int world_size, int rank, void boundary_exchange_x(MPI_Comm comm, int world_size, int rank,
gt::gtensor_device<double, 2>& d_z, int n_bnd, gt::ext::gtensor2<double, 2, S>& d_z, int n_bnd,
bool stage_host = false) bool stage_host = false)
{ {
auto buf_shape = gt::shape(n_bnd, d_z.shape(1)); auto buf_shape = gt::shape(n_bnd, d_z.shape(1));
@@ -233,102 +254,244 @@ void boundary_exchange_x(MPI_Comm comm, int world_size, int rank,
gt::synchronize(); gt::synchronize();
} }
int main(int argc, char** argv) // exchange in second dimension, optional staging into device buffer
template <typename S>
void boundary_exchange_y(MPI_Comm comm, int world_size, int rank,
gt::ext::gtensor2<double, 2, S>& d_z, int n_bnd,
bool stage_device)
{ {
// Note: domain will be n_global x n_global plus ghost points in one dimension gt::shape_type<2> buf_shape;
int n_global = 8 * 1024; if (stage_device) {
bool stage_host = false; buf_shape = gt::shape(d_z.shape(0), n_bnd);
int n_iter = 100; } else {
int n_warmup = 5; buf_shape = {0, 0};
if (argc > 1) {
n_global = std::atoi(argv[1]) * 1024;
} }
if (argc > 2) {
if (argv[2][0] == '1') { gt::gtensor_device<double, 2> sbuf_l(buf_shape);
stage_host = true; gt::gtensor_device<double, 2> sbuf_r(buf_shape);
gt::gtensor_device<double, 2> rbuf_r(buf_shape);
gt::gtensor_device<double, 2> rbuf_l(buf_shape);
MPI_Request req_l[2];
MPI_Request req_r[2];
int rank_l = rank - 1;
int rank_r = rank + 1;
auto sv_l = gt::view_strided(d_z, _all, _s(n_bnd, 2 * n_bnd));
auto sv_r = gt::view_strided(d_z, _all, _s(-2 * n_bnd, -n_bnd));
auto rv_l = gt::view_strided(d_z, _all, _s(0, n_bnd));
auto rv_r = gt::view_strided(d_z, _all, _s(-n_bnd, _));
// start async copy of ghost points into send buffers
if (stage_device) {
if (rank_l >= 0) {
sbuf_l = sv_l;
}
if (rank_r <= world_size) {
sbuf_r = sv_r;
} }
} }
if (argc > 3) {
n_iter = std::atoi(argv[3]); // initiate async recv
if (rank_l >= 0) {
double* rbuf_l_data = nullptr;
if (stage_device) {
rbuf_l_data = rbuf_l.data().get();
} else {
rbuf_l_data = rv_l.data().get();
}
CHECK(MPI_Irecv(rbuf_l_data, rv_l.size(), MPI_DOUBLE, rank_l, 123, comm,
&req_l[0]));
} }
if (rank_r < world_size) {
double* rbuf_r_data = nullptr;
if (stage_device) {
rbuf_r_data = rbuf_r.data().get();
} else {
rbuf_r_data = rv_r.data().get();
}
CHECK(MPI_Irecv(rbuf_r_data, rv_r.size(), MPI_DOUBLE, rank_r, 456, comm,
&req_r[0]));
}
// wait for send buffer fill
// if (stage_device) {
gt::synchronize();
// }
// initiate async sends
if (rank_l >= 0) {
double* sbuf_l_data = nullptr;
if (stage_device) {
sbuf_l_data = sbuf_l.data().get();
} else {
sbuf_l_data = sv_l.data().get();
}
CHECK(MPI_Isend(sbuf_l_data, sv_l.size(), MPI_DOUBLE, rank_l, 456, comm,
&req_l[1]));
}
if (rank_r < world_size) {
double* sbuf_r_data = nullptr;
if (stage_device) {
sbuf_r_data = sbuf_r.data().get();
} else {
sbuf_r_data = sv_r.data().get();
}
CHECK(MPI_Isend(sbuf_r_data, sv_r.size(), MPI_DOUBLE, rank_r, 123, comm,
&req_r[1]));
}
// wait for send/recv to complete, then copy data back into main data array
int mpi_rval;
if (rank_l >= 0) {
MPI_Status status[2];
mpi_rval = MPI_Waitall(2, req_l, status);
if (mpi_rval != MPI_SUCCESS) {
printf("send_l error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR,
status[1].MPI_ERROR);
}
if (stage_device) {
gt::copy(rbuf_l, rv_l);
}
}
if (rank_r < world_size) {
MPI_Status status[2];
mpi_rval = MPI_Waitall(2, req_r, status);
if (mpi_rval != MPI_SUCCESS) {
printf("send_r error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR,
status[1].MPI_ERROR);
}
if (stage_device) {
gt::copy(rbuf_r, rv_r);
}
}
gt::synchronize();
}
template <int Dim, typename S>
void print_test_name(bool use_buffers)
{
if constexpr (std::is_same<S, gt::space::device>::value) {
printf("TEST dim:%d, device , buf:%d", Dim, use_buffers);
} else {
printf("TEST dim:%d, managed, buf:%d", Dim, use_buffers);
}
}
template <typename S, int Dim>
void test_deriv(int device_id, uint32_t vendor_id, int world_size,
int world_rank, int n_global, int n_iter, bool use_buffers,
int n_warmup = 5)
{
// Note: domain will be n_global x n_global plus ghost points in one dimension
int n_sten = 5; int n_sten = 5;
int n_bnd = (n_sten - 1) / 2; int n_bnd = (n_sten - 1) / 2;
int world_size, world_rank, device_id;
uint32_t vendor_id;
CHECK(MPI_Init(NULL, NULL));
CHECK(MPI_Comm_size(MPI_COMM_WORLD, &world_size));
CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &world_rank));
if (n_global % world_size != 0) {
printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n",
world_rank, world_size, n_global);
exit(1);
}
const int n_local = n_global / world_size; const int n_local = n_global / world_size;
const int n_local_with_ghost = n_local + 2 * n_bnd;
set_rank_device(world_size, world_rank); int nx_local, ny_local;
device_id = gt::backend::clib::device_get(); int nx_local_ghost, ny_local_ghost;
vendor_id = gt::backend::clib::device_get_vendor_id(device_id); int nx_bnd, ny_bnd;
if (world_rank == 0) { if constexpr (Dim == 0) {
printf("n procs = %d\n", world_size); nx_bnd = n_bnd;
printf("n_global = %d\n", n_global); ny_bnd = 0;
printf("n_local = %d\n", n_local); nx_local = n_local;
printf("n_iter = %d\n", n_iter); nx_local_ghost = n_local + 2 * n_bnd;
printf("n_warmup = %d\n", n_warmup); ny_local = n_global;
printf("stage_host = %d\n", stage_host); ny_local_ghost = n_global;
} else {
nx_bnd = 0;
ny_bnd = n_bnd;
nx_local = n_global;
nx_local_ghost = n_global;
ny_local = n_local;
ny_local_ghost = n_local + 2 * n_bnd;
} }
auto h_z = gt::empty<double>({n_local_with_ghost, n_global}); gt::shape_type<2> z_shape(nx_local_ghost, ny_local_ghost);
auto d_z = gt::empty_device<double>({n_local_with_ghost, n_global}); gt::shape_type<2> dz_shape(nx_local, ny_local);
auto h_dzdx_numeric = gt::empty<double>({n_local, n_global}); auto h_z = gt::empty<double>(z_shape);
auto h_dzdx_actual = gt::empty<double>({n_local, n_global}); gt::ext::gtensor2<double, 2, S> d_z(z_shape);
auto d_dzdx_numeric = gt::empty_device<double>({n_local, n_global});
double lx = 8; auto h_dz_numeric = gt::empty<double>(dz_shape);
double dx = lx / n_global; auto h_dz_actual = gt::empty<double>(dz_shape);
double lx_local = lx / world_size; gt::ext::gtensor2<double, 2, S> d_dz_numeric(dz_shape);
double scale = n_global / lx;
double ln = 8;
double delta = ln / n_global;
double ln_local = ln / world_size;
double scale = n_global / ln;
auto fn = [](double x, double y) { return x * x * x + y * y; }; auto fn = [](double x, double y) { return x * x * x + y * y; };
auto fn_dzdx = [](double x, double y) { return 3 * x * x; }; auto fn_dzdx = [](double x, double y) { return 3 * x * x; };
auto fn_dzdy = [](double x, double y) { return 2 * y; };
struct timespec start, end; struct timespec start, end;
double iter_time = 0.0; double iter_time = 0.0;
double total_time = 0.0; double total_time = 0.0;
double x_start = world_rank * lx_local; double x_start = 0, y_start = 0;
for (int j = 0; j < n_global; j++) { if constexpr (Dim == 0) {
double ytmp = j * dx; x_start = world_rank * ln_local;
for (int i = 0; i < n_local; i++) { } else {
double xtmp = x_start + i * dx; y_start = world_rank * ln_local;
h_z(i + n_bnd, j) = fn(xtmp, ytmp); }
h_dzdx_actual(i, j) = fn_dzdx(xtmp, ytmp); for (int j = 0; j < ny_local; j++) {
double ytmp = y_start + j * delta;
for (int i = 0; i < nx_local; i++) {
double xtmp = x_start + i * delta;
h_z(i + nx_bnd, j + ny_bnd) = fn(xtmp, ytmp);
if constexpr (Dim == 0) {
h_dz_actual(i, j) = fn_dzdx(xtmp, ytmp);
} else {
h_dz_actual(i, j) = fn_dzdy(xtmp, ytmp);
}
} }
} }
// fill boundary points on ends // fill boundary points on ends
if (world_rank == 0) { if constexpr (Dim == 0) {
for (int j = 0; j < n_global; j++) { if (world_rank == 0) {
double ytmp = j * dx; for (int j = 0; j < ny_local; j++) {
for (int i = 0; i < n_bnd; i++) { double ytmp = j * delta;
double xtmp = (i - n_bnd) * dx; for (int i = 0; i < nx_bnd; i++) {
h_z(i, j) = fn(xtmp, ytmp); double xtmp = (i - nx_bnd) * delta;
h_z(i, j) = fn(xtmp, ytmp);
}
} }
} }
} if (world_rank == world_size - 1) {
if (world_rank == world_size - 1) { for (int j = 0; j < ny_local; j++) {
for (int j = 0; j < n_global; j++) { double ytmp = j * delta;
double ytmp = j * dx; for (int i = 0; i < nx_bnd; i++) {
for (int i = 0; i < n_bnd; i++) { double xtmp = ln + i * delta;
double xtmp = lx + i * dx; h_z(nx_bnd + nx_local + i, j) = fn(xtmp, ytmp);
h_z(n_bnd + n_local + i, j) = fn(xtmp, ytmp); }
}
}
} else {
if (world_rank == 0) {
for (int j = 0; j < ny_bnd; j++) {
double ytmp = (j - ny_bnd) * delta;
for (int i = 0; i < nx_local; i++) {
double xtmp = i * delta;
h_z(i, j) = fn(xtmp, ytmp);
}
}
}
if (world_rank == world_size - 1) {
for (int j = 0; j < ny_bnd; j++) {
double ytmp = ln + j * delta;
for (int i = 0; i < nx_local; i++) {
double xtmp = i * delta;
h_z(i, ny_bnd + ny_local + j) = fn(xtmp, ytmp);
}
} }
} }
} }
@@ -347,8 +510,13 @@ int main(int argc, char** argv)
for (int i = 0; i < n_warmup + n_iter; i++) { for (int i = 0; i < n_warmup + n_iter; i++) {
clock_gettime(CLOCK_MONOTONIC, &start); clock_gettime(CLOCK_MONOTONIC, &start);
boundary_exchange_x(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd, if constexpr (Dim == 0) {
stage_host); boundary_exchange_x<S>(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd,
use_buffers);
} else {
boundary_exchange_y<S>(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd,
use_buffers);
}
clock_gettime(CLOCK_MONOTONIC, &end); clock_gettime(CLOCK_MONOTONIC, &end);
iter_time = iter_time =
((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9); ((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
@@ -358,13 +526,19 @@ int main(int argc, char** argv)
} }
// do some calculation, to try to more closely simulate what happens in GENE // do some calculation, to try to more closely simulate what happens in GENE
d_dzdx_numeric = stencil2d_1d_5(d_z, stencil5) * scale; if constexpr (Dim == 0) {
d_dz_numeric = stencil2d_1d_5_d0<S>(d_z, stencil5) * scale;
} else {
d_dz_numeric = stencil2d_1d_5_d1<S>(d_z, stencil5) * scale;
}
gt::synchronize(); gt::synchronize();
} }
#ifdef DEBUG
printf("%d/%d exchange time %0.8f ms\n", world_rank, world_size, printf("%d/%d exchange time %0.8f ms\n", world_rank, world_size,
total_time / n_iter * 1000); total_time / n_iter * 1000);
#endif
gt::copy(d_dzdx_numeric, h_dzdx_numeric); gt::copy(d_dz_numeric, h_dz_numeric);
/* /*
for (int i = 0; i < 5; i++) { for (int i = 0; i < 5; i++) {
@@ -378,10 +552,181 @@ int main(int argc, char** argv)
} }
*/ */
double err_norm = std::sqrt(gt::sum_squares(h_dzdx_numeric - h_dzdx_actual)); double err_norm = std::sqrt(gt::sum_squares(h_dz_numeric - h_dz_actual));
#ifdef DEBUG
printf("%d/%d [%d:0x%08x] err_norm = %.8f\n", world_rank, world_size, printf("%d/%d [%d:0x%08x] err_norm = %.8f\n", world_rank, world_size,
device_id, vendor_id, err_norm); device_id, vendor_id, err_norm);
#endif
double time_sum;
MPI_Reduce(&total_time, &time_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
double err_sum;
MPI_Reduce(&err_norm, &err_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (world_rank == 0) {
print_test_name<Dim, S>(use_buffers);
printf("; %0.8f, err=%0.8f\n", time_sum, err_sum);
}
}
template <typename S, int Dim>
void test_sum(int device_id, uint32_t vendor_id, int world_size, int world_rank,
int n_global, int n_iter, int n_warmup = 5)
{
// Note: domain will be n_global x n_global plus ghost points in one dimension
const int n_local = n_global / world_size;
int nx_local, ny_local;
struct timespec start, end;
double iter_time = 0.0;
double total_time = 0.0;
if constexpr (Dim == 0) {
nx_local = n_local;
ny_local = n_global;
} else {
nx_local = n_global;
ny_local = n_local;
}
gt::shape_type<2> z_shape(nx_local, ny_local);
gt::ext::gtensor2<double, 2, S> d_z(z_shape, PI / world_size);
// reduction test
gt::shape_type<1> sum_shape;
if constexpr (Dim == 0) {
sum_shape = gt::shape(d_z.shape(0));
} else {
sum_shape = gt::shape(d_z.shape(1));
}
gt::ext::gtensor2<double, 1, S> d_sum(sum_shape);
gt::gtensor<double, 1> h_sum(sum_shape);
for (int i = 0; i < n_warmup + n_iter; i++) {
if constexpr (Dim == 0) {
gt::sum_axis_to(d_sum, d_z, 0);
gt::synchronize();
clock_gettime(CLOCK_MONOTONIC, &start);
CHECK(MPI_Allreduce(MPI_IN_PLACE, d_sum.data().get(), d_sum.size(),
MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD));
clock_gettime(CLOCK_MONOTONIC, &end);
} else {
gt::sum_axis_to(d_sum, d_z, 1);
gt::synchronize();
clock_gettime(CLOCK_MONOTONIC, &start);
CHECK(MPI_Allreduce(MPI_IN_PLACE, d_sum.data().get(), d_sum.size(),
MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD));
clock_gettime(CLOCK_MONOTONIC, &end);
}
iter_time =
((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
if (i >= n_warmup) {
total_time += iter_time;
}
}
#ifdef DEBUG
printf("%d/%d allreduce time %0.8f ms\n", world_rank, world_size,
total_time / n_iter * 1000);
#endif
gt::copy(d_sum, h_sum);
double time_sum;
MPI_Reduce(&total_time, &time_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (world_rank == 0) {
print_test_name<Dim, S>(false);
printf("; allreduce=%0.8f\n", time_sum);
}
}
int main(int argc, char** argv)
{
using S = gt::space::managed;
// Note: domain will be n_global x n_global plus ghost points in one dimension
int n_global = 8 * 1024;
int n_iter = 1000;
int n_warmup = 10;
if (argc > 1) {
n_global = std::atoi(argv[1]) * 1024;
}
if (argc > 2) {
n_iter = std::atoi(argv[2]);
}
int world_size, world_rank, device_id;
uint32_t vendor_id;
CHECK(MPI_Init(NULL, NULL));
CHECK(MPI_Comm_size(MPI_COMM_WORLD, &world_size));
CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &world_rank));
if (n_global % world_size != 0) {
printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n",
world_rank, world_size, n_global);
exit(1);
}
const int n_local = n_global / world_size;
set_rank_device(world_size, world_rank);
device_id = gt::backend::clib::device_get();
vendor_id = gt::backend::clib::device_get_vendor_id(device_id);
if (world_rank == 0) {
printf("n procs = %d\n", world_size);
printf("n_global = %d\n", n_global);
printf("n_local = %d\n", n_local);
printf("n_iter = %d\n", n_iter);
printf("n_warmup = %d\n", n_warmup);
}
fflush(stdout);
test_deriv<gt::space::device, 0>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, true, 5);
test_deriv<gt::space::device, 0>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, false, 5);
#ifdef TEST_MANAGED
test_deriv<gt::space::managed, 0>(device_id, vendor_id, world_size,
world_rank, n_global, n_iter, true, 5);
test_deriv<gt::space::managed, 0>(device_id, vendor_id, world_size,
world_rank, n_global, n_iter, false, 5);
#endif
test_deriv<gt::space::device, 1>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, true, 5);
test_deriv<gt::space::device, 1>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, false, 5);
#ifdef TEST_MANAGED
test_deriv<gt::space::managed, 1>(device_id, vendor_id, world_size,
world_rank, n_global, n_iter, true, 5);
test_deriv<gt::space::managed, 1>(device_id, vendor_id, world_size,
world_rank, n_global, n_iter, false, 5);
#endif
test_sum<gt::space::device, 0>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, 5);
#ifdef TEST_MANAGED
test_sum<gt::space::managed, 0>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, 5);
#endif
test_sum<gt::space::device, 1>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, 5);
#ifdef TEST_MANAGED
test_sum<gt::space::managed, 1>(device_id, vendor_id, world_size, world_rank,
n_global, n_iter, 5);
#endif
MPI_Finalize(); MPI_Finalize();