Compare commits

...

3 Commits

Author SHA1 Message Date
Bryce Allen 7967991bd9 cmake: updates for gt stencil2d
3 years ago
Bryce Allen 02ab50ab60 gt: WIP y (outer) dim test
3 years ago
Bryce Allen 5bcf1382ba gt: parameterize space
3 years ago

@ -6,30 +6,35 @@ project(mpi-daxpy-test)
# add dependencies
include(cmake/CPM.cmake)
CPMFindPackage(NAME gtensor
GITHUB_REPOSITORY wdmapp/gtensor
GIT_TAG "main"
GITHUB_REPOSITORY bd4/gtensor
GIT_TAG "pr/view-contiguous"
OPTIONS "GTENSOR_ENABLE_BLAS ON")
set(MPI_CXX_SKIP_MPICXX ON)
find_package(MPI REQUIRED)
if ("${GTENSOR_DEVICE}" STREQUAL "cuda")
enable_language(CUDA)
endif()
add_executable(mpi_daxpy_gt)
target_sources(mpi_daxpy_gt PRIVATE mpi_daxpy_gt.cc)
target_link_libraries(mpi_daxpy_gt gtensor::gtensor)
target_link_libraries(mpi_daxpy_gt gtensor::blas)
target_link_libraries(mpi_daxpy_gt MPI::MPI_CXX)
target_link_libraries(mpi_daxpy_gt PRIVATE gtensor::gtensor)
target_link_libraries(mpi_daxpy_gt PRIVATE gtensor::blas)
target_link_libraries(mpi_daxpy_gt PRIVATE MPI::MPI_CXX)
add_executable(mpi_stencil_gt)
target_sources(mpi_stencil_gt PRIVATE mpi_stencil_gt.cc)
target_link_libraries(mpi_stencil_gt gtensor::gtensor)
target_link_libraries(mpi_stencil_gt MPI::MPI_CXX)
target_link_libraries(mpi_stencil_gt PRIVATE gtensor::gtensor)
target_link_libraries(mpi_stencil_gt PRIVATE MPI::MPI_CXX)
add_executable(mpi_stencil2d_gt)
target_sources(mpi_stencil2d_gt PRIVATE mpi_stencil2d_gt.cc)
target_link_libraries(mpi_stencil2d_gt gtensor::gtensor)
target_link_libraries(mpi_stencil2d_gt MPI::MPI_CXX)
target_link_libraries(mpi_stencil2d_gt PRIVATE gtensor::gtensor)
target_link_libraries(mpi_stencil2d_gt PRIVATE MPI::MPI_CXX)
target_compile_features(mpi_stencil2d_gt PRIVATE cxx_std_17)
if ("${GTENSOR_DEVICE}" STREQUAL "cuda")
enable_language(CUDA)
set_source_files_properties(mpi_daxpy_gt.cc
TARGET_DIRECTORY mpi_daxpy_gt
PROPERTIES LANGUAGE CUDA)
@ -37,7 +42,7 @@ if ("${GTENSOR_DEVICE}" STREQUAL "cuda")
TARGET_DIRECTORY mpi_stencil_gt
PROPERTIES LANGUAGE CUDA)
set_source_files_properties(mpi_stencil2d_gt.cc
TARGET_DIRECTORY mpi_stencil_gt
TARGET_DIRECTORY mpi_stencil2d_gt
PROPERTIES LANGUAGE CUDA)
else()
set_source_files_properties(mpi_daxpy_gt.cc
@ -47,7 +52,7 @@ else()
TARGET_DIRECTORY mpi_stencil_gt
PROPERTIES LANGUAGE CXX)
set_source_files_properties(mpi_stencil2d_gt.cc
TARGET_DIRECTORY mpi_stencil_gt
TARGET_DIRECTORY mpi_stencil2d_gt
PROPERTIES LANGUAGE CXX)
endif()

@ -79,7 +79,8 @@ static const gt::gtensor<double, 1> stencil5 = {1.0 / 12.0, -2.0 / 3.0, 0.0,
*
* Size of the result will be size of z with minus 4 in second dimension.
*/
inline auto stencil2d_1d_5(const gt::gtensor_device<double, 2>& z,
template <typename S>
inline auto stencil2d_1d_5_d0(const gt::ext::gtensor2<double, 2, S>& z,
const gt::gtensor<double, 1>& stencil)
{
return stencil(0) * z.view(_s(0, -4), _all) +
@ -89,6 +90,23 @@ inline auto stencil2d_1d_5(const gt::gtensor_device<double, 2>& z,
stencil(4) * z.view(_s(4, _), _all);
}
/*
* Return unevaluated expression that calculates the 1d stencil in the
* second dimension of a 2d array.
*
* Size of the result will be size of z with minus 4 in second dimension.
*/
template <typename S>
inline auto stencil2d_1d_5_d1(const gt::ext::gtensor2<double, 2, S>& z,
const gt::gtensor<double, 1>& stencil)
{
return stencil(0) * z.view(_all, _s(0, -4)) +
stencil(1) * z.view(_all, _s(1, -3)) +
stencil(2) * z.view(_all, _s(2, -2)) +
stencil(3) * z.view(_all, _s(3, -1)) +
stencil(4) * z.view(_all, _s(4, _));
}
void set_rank_device(int n_ranks, int rank)
{
int n_devices, device, ranks_per_device;
@ -113,8 +131,9 @@ void set_rank_device(int n_ranks, int rank)
}
// exchange in first dimension, staging into contiguous buffers on device
template <typename S>
void boundary_exchange_x(MPI_Comm comm, int world_size, int rank,
gt::gtensor_device<double, 2>& d_z, int n_bnd,
gt::ext::gtensor2<double, 2, S>& d_z, int n_bnd,
bool stage_host = false)
{
auto buf_shape = gt::shape(n_bnd, d_z.shape(1));
@ -233,102 +252,246 @@ void boundary_exchange_x(MPI_Comm comm, int world_size, int rank,
gt::synchronize();
}
int main(int argc, char** argv)
// exchange in second dimension, optional staging into device buffer
template <typename S>
void boundary_exchange_y(MPI_Comm comm, int world_size, int rank,
gt::ext::gtensor2<double, 2, S>& d_z, int n_bnd,
bool stage_device)
{
// Note: domain will be n_global x n_global plus ghost points in one dimension
int n_global = 8 * 1024;
bool stage_host = false;
int n_iter = 100;
int n_warmup = 5;
gt::shape_type<2> buf_shape;
if (stage_device) {
buf_shape = gt::shape(d_z.shape(0), n_bnd);
} else {
buf_shape = {0, 0};
}
if (argc > 1) {
n_global = std::atoi(argv[1]) * 1024;
gt::gtensor_device<double, 2> sbuf_l(buf_shape);
gt::gtensor_device<double, 2> sbuf_r(buf_shape);
gt::gtensor_device<double, 2> rbuf_r(buf_shape);
gt::gtensor_device<double, 2> rbuf_l(buf_shape);
MPI_Request req_l[2];
MPI_Request req_r[2];
int rank_l = (rank - 1) % world_size;
int rank_r = (rank + 1) % world_size;
auto sv_l = gt::view_strided(d_z, _all, _s(n_bnd, 2 * n_bnd));
auto sv_r = gt::view_strided(d_z, _all, _s(-2 * n_bnd, -n_bnd));
auto rv_l = gt::view_strided(d_z, _all, _s(0, n_bnd));
auto rv_r = gt::view_strided(d_z, _all, _s(-n_bnd, _));
// start async copy of ghost points into send buffers
if (rank_l >= 0) {
if (stage_device) {
sbuf_l = sv_l;
}
}
if (argc > 2) {
if (argv[2][0] == '1') {
stage_host = true;
if (rank_r <= world_size) {
if (stage_device) {
sbuf_r = sv_r;
}
}
if (argc > 3) {
n_iter = std::atoi(argv[3]);
// initiate async recv
if (rank_l >= 0) {
double* rbuf_l_data = nullptr;
if (stage_device) {
rbuf_l_data = rbuf_l.data().get();
} else {
rbuf_l_data = rv_l.data().get();
}
CHECK(MPI_Irecv(rbuf_l_data, rbuf_l.size(), MPI_DOUBLE, rank_l, 123, comm,
&req_l[0]));
}
int n_sten = 5;
int n_bnd = (n_sten - 1) / 2;
int world_size, world_rank, device_id;
uint32_t vendor_id;
if (rank_r < world_size) {
double* rbuf_r_data = nullptr;
if (stage_device) {
rbuf_r_data = rbuf_r.data().get();
} else {
rbuf_r_data = rv_r.data().get();
}
CHECK(MPI_Irecv(rbuf_r_data, rbuf_r.size(), MPI_DOUBLE, rank_r, 456, comm,
&req_r[0]));
}
CHECK(MPI_Init(NULL, NULL));
// wait for send buffer fill
gt::synchronize();
CHECK(MPI_Comm_size(MPI_COMM_WORLD, &world_size));
CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &world_rank));
// initiate async sends
if (rank_l >= 0) {
double* sbuf_l_data = nullptr;
if (stage_device) {
sbuf_l_data = sbuf_l.data().get();
} else {
sbuf_l_data = sv_l.data().get();
}
CHECK(MPI_Isend(sbuf_l_data, sbuf_l.size(), MPI_DOUBLE, rank_l, 456, comm,
&req_l[1]));
}
if (n_global % world_size != 0) {
printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n",
world_rank, world_size, n_global);
exit(1);
if (rank_r < world_size) {
double* sbuf_r_data = nullptr;
if (stage_device) {
sbuf_r_data = sbuf_r.data().get();
} else {
sbuf_r_data = sv_r.data().get();
}
CHECK(MPI_Isend(sbuf_r_data, sbuf_r.size(), MPI_DOUBLE, rank_r, 123, comm,
&req_r[1]));
}
// wait for send/recv to complete, then copy data back into main data array
int mpi_rval;
if (rank_l >= 0) {
MPI_Status status[2];
mpi_rval = MPI_Waitall(2, req_l, status);
if (mpi_rval != MPI_SUCCESS) {
printf("send_l error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR,
status[1].MPI_ERROR);
}
if (stage_device) {
gt::copy(rbuf_l, rv_l);
}
}
if (rank_r < world_size) {
MPI_Status status[2];
mpi_rval = MPI_Waitall(2, req_r, status);
if (mpi_rval != MPI_SUCCESS) {
printf("send_r error: %d (%d %d)\n", mpi_rval, status[0].MPI_ERROR,
status[1].MPI_ERROR);
}
if (stage_device) {
gt::copy(rbuf_r, rv_r);
}
}
gt::synchronize();
}
template <int Dim, typename S>
void print_test_name(bool use_buffers)
{
if constexpr (std::is_same<S, gt::space::device>::value) {
printf("=== TEST dim:%d, device , buf:%d\n", Dim, use_buffers);
} else {
printf("=== TEST dim:%d, managed, buf:%d\n", Dim, use_buffers);
}
}
template <typename S, int Dim>
void test(int device_id, uint32_t vendor_id, int world_size, int world_rank,
int n_global, int n_iter, bool use_buffers, int n_warmup=5)
{
// Note: domain will be n_global x n_global plus ghost points in one dimension
int n_sten = 5;
int n_bnd = (n_sten - 1) / 2;
const int n_local = n_global / world_size;
const int n_local_with_ghost = n_local + 2 * n_bnd;
set_rank_device(world_size, world_rank);
device_id = gt::backend::clib::device_get();
vendor_id = gt::backend::clib::device_get_vendor_id(device_id);
int nx_local, ny_local;
int nx_local_ghost, ny_local_ghost;
int nx_bnd, ny_bnd;
if constexpr (Dim == 0) {
nx_bnd = n_bnd;
ny_bnd = 0;
nx_local = n_local;
nx_local_ghost = n_local + 2 * n_bnd;
ny_local = n_global;
ny_local_ghost = n_global;
} else {
nx_bnd = 0;
ny_bnd = n_bnd;
nx_local = n_global;
nx_local_ghost = n_global;
ny_local = n_local;
ny_local_ghost = n_local + 2 * n_bnd;
}
if (world_rank == 0) {
printf("n procs = %d\n", world_size);
printf("n_global = %d\n", n_global);
printf("n_local = %d\n", n_local);
printf("n_iter = %d\n", n_iter);
printf("n_warmup = %d\n", n_warmup);
printf("stage_host = %d\n", stage_host);
print_test_name<Dim, S>(use_buffers);
}
auto h_z = gt::empty<double>({n_local_with_ghost, n_global});
auto d_z = gt::empty_device<double>({n_local_with_ghost, n_global});
gt::shape_type<2> z_shape(nx_local_ghost, ny_local_ghost);
gt::shape_type<2> dz_shape(nx_local, ny_local);
auto h_dzdx_numeric = gt::empty<double>({n_local, n_global});
auto h_dzdx_actual = gt::empty<double>({n_local, n_global});
auto d_dzdx_numeric = gt::empty_device<double>({n_local, n_global});
auto h_z = gt::empty<double>(z_shape);
gt::ext::gtensor2<double, 2, S> d_z(z_shape);
double lx = 8;
double dx = lx / n_global;
double lx_local = lx / world_size;
double scale = n_global / lx;
auto h_dz_numeric = gt::empty<double>(dz_shape);
auto h_dz_actual = gt::empty<double>(dz_shape);
gt::ext::gtensor2<double, 2, S> d_dz_numeric(dz_shape);
double ln = 8;
double delta = ln / n_global;
double ln_local = ln / world_size;
double scale = n_global / ln;
auto fn = [](double x, double y) { return x * x * x + y * y; };
auto fn_dzdx = [](double x, double y) { return 3 * x * x; };
auto fn_dzdy = [](double x, double y) { return 2 * y; };
struct timespec start, end;
double iter_time = 0.0;
double total_time = 0.0;
double x_start = world_rank * lx_local;
for (int j = 0; j < n_global; j++) {
double ytmp = j * dx;
for (int i = 0; i < n_local; i++) {
double xtmp = x_start + i * dx;
h_z(i + n_bnd, j) = fn(xtmp, ytmp);
h_dzdx_actual(i, j) = fn_dzdx(xtmp, ytmp);
double x_start=0, y_start=0;
if constexpr (Dim == 0) {
x_start = world_rank * ln_local;
} else {
y_start = world_rank * ln_local;
}
for (int j = 0; j < ny_local; j++) {
double ytmp = y_start + j * delta;
for (int i = 0; i < nx_local; i++) {
double xtmp = x_start + i * delta;
h_z(i + nx_bnd, j + ny_bnd) = fn(xtmp, ytmp);
if constexpr (Dim == 0) {
h_dz_actual(i, j) = fn_dzdx(xtmp, ytmp);
} else {
h_dz_actual(i, j) = fn_dzdy(xtmp, ytmp);
}
}
}
// fill boundary points on ends
if (world_rank == 0) {
for (int j = 0; j < n_global; j++) {
double ytmp = j * dx;
for (int i = 0; i < n_bnd; i++) {
double xtmp = (i - n_bnd) * dx;
h_z(i, j) = fn(xtmp, ytmp);
if constexpr (Dim == 0) {
if (world_rank == 0) {
for (int j = 0; j < ny_local; j++) {
double ytmp = j * delta;
for (int i = 0; i < nx_bnd; i++) {
double xtmp = (i - nx_bnd) * delta;
h_z(i, j) = fn(xtmp, ytmp);
}
}
}
}
if (world_rank == world_size - 1) {
for (int j = 0; j < n_global; j++) {
double ytmp = j * dx;
for (int i = 0; i < n_bnd; i++) {
double xtmp = lx + i * dx;
h_z(n_bnd + n_local + i, j) = fn(xtmp, ytmp);
if (world_rank == world_size - 1) {
for (int j = 0; j < ny_local; j++) {
double ytmp = j * delta;
for (int i = 0; i < nx_bnd; i++) {
double xtmp = ln + i * delta;
h_z(nx_bnd + nx_local + i, j) = fn(xtmp, ytmp);
}
}
}
} else {
if (world_rank == 0) {
for (int j = 0; j < ny_bnd; j++) {
double ytmp = (j - ny_bnd) * delta;
for (int i = 0; i < nx_local; i++) {
double xtmp = i * delta;
h_z(i, j) = fn(xtmp, ytmp);
}
}
}
if (world_rank == world_size - 1) {
for (int j = 0; j < ny_bnd; j++) {
double ytmp = ln + j * delta;
for (int i = 0; i < nx_local; i++) {
double xtmp = i * delta;
h_z(i, ny_bnd + ny_local + j) = fn(xtmp, ytmp);
}
}
}
}
@ -347,8 +510,13 @@ int main(int argc, char** argv)
for (int i = 0; i < n_warmup + n_iter; i++) {
clock_gettime(CLOCK_MONOTONIC, &start);
boundary_exchange_x(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd,
stage_host);
if constexpr (Dim == 0) {
boundary_exchange_x<S>(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd,
use_buffers);
} else {
boundary_exchange_y<S>(MPI_COMM_WORLD, world_size, world_rank, d_z, n_bnd,
use_buffers);
}
clock_gettime(CLOCK_MONOTONIC, &end);
iter_time =
((end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) * 1.0e-9);
@ -358,13 +526,17 @@ int main(int argc, char** argv)
}
// do some calculation, to try to more closely simulate what happens in GENE
d_dzdx_numeric = stencil2d_1d_5(d_z, stencil5) * scale;
if constexpr (Dim == 0) {
d_dz_numeric = stencil2d_1d_5_d0<S>(d_z, stencil5) * scale;
} else {
d_dz_numeric = stencil2d_1d_5_d1<S>(d_z, stencil5) * scale;
}
gt::synchronize();
}
printf("%d/%d exchange time %0.8f ms\n", world_rank, world_size,
total_time / n_iter * 1000);
gt::copy(d_dzdx_numeric, h_dzdx_numeric);
gt::copy(d_dz_numeric, h_dz_numeric);
/*
for (int i = 0; i < 5; i++) {
@ -378,11 +550,75 @@ int main(int argc, char** argv)
}
*/
double err_norm = std::sqrt(gt::sum_squares(h_dzdx_numeric - h_dzdx_actual));
double err_norm = std::sqrt(gt::sum_squares(h_dz_numeric - h_dz_actual));
printf("%d/%d [%d:0x%08x] err_norm = %.8f\n", world_rank, world_size,
device_id, vendor_id, err_norm);
}
int main(int argc, char** argv)
{
using S = gt::space::managed;
// Note: domain will be n_global x n_global plus ghost points in one dimension
int n_global = 8 * 1024;
int n_iter = 100;
int n_warmup = 5;
if (argc > 1) {
n_global = std::atoi(argv[1]) * 1024;
}
if (argc > 2) {
n_iter = std::atoi(argv[2]);
}
int world_size, world_rank, device_id;
uint32_t vendor_id;
CHECK(MPI_Init(NULL, NULL));
CHECK(MPI_Comm_size(MPI_COMM_WORLD, &world_size));
CHECK(MPI_Comm_rank(MPI_COMM_WORLD, &world_rank));
if (n_global % world_size != 0) {
printf("%d nmpi (%d) must be divisor of domain size (%d), exiting\n",
world_rank, world_size, n_global);
exit(1);
}
const int n_local = n_global / world_size;
set_rank_device(world_size, world_rank);
device_id = gt::backend::clib::device_get();
vendor_id = gt::backend::clib::device_get_vendor_id(device_id);
if (world_rank == 0) {
printf("n procs = %d\n", world_size);
printf("n_global = %d\n", n_global);
printf("n_local = %d\n", n_local);
printf("n_iter = %d\n", n_iter);
printf("n_warmup = %d\n", n_warmup);
}
fflush(stdout);
/*
test<gt::space::device, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5);
test<gt::space::device, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5);
test<gt::space::managed, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5);
test<gt::space::managed, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5);
test<gt::space::device, 1>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5);
test<gt::space::device, 1>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5);
test<gt::space::managed, 1>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5);
test<gt::space::managed, 1>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5);
*/
test<gt::space::managed, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5);
test<gt::space::managed, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5);
test<gt::space::device, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, true, 5);
test<gt::space::device, 0>(device_id, vendor_id, world_size, world_rank, n_global, n_iter, false, 5);
MPI_Finalize();
return EXIT_SUCCESS;

Loading…
Cancel
Save