initial version

main
Bryce Allen 6 years ago
commit 74b23dff0b

2
.gitignore vendored

@ -0,0 +1,2 @@
daxpy
mpi_daxpy

@ -0,0 +1,15 @@
.PHONY: all
all: daxpy mpi_daxpy
daxpy: daxpy.cu cuda_error.h
nvcc -lcublas -o daxpy daxpy.cu
mpi_daxpy: mpi_daxpy.cc cuda_error.h
mpic++ -lcudart -lcublas -I$(CUDA_HOME)/include -o mpi_daxpy mpi_daxpy.cc
.PHONY: clean
clean:
rm -rf daxpy mpi_daxpy
.PHONY: force
force: clean all

@ -0,0 +1,138 @@
/** Error handling macros for CUDA. All cuda routines should be wrapped
* in either a CHECK or WARN call; CHECK will print the error and exit on
* failure, while WARN will just print the error on failure. PTRINFO is
* a convenience routine for debugging data that needs to be moved to
* reg storage.
*
* By default, no checking is done, for maximum performance on production
* runs. define "GPU_CHECK_CALLS" to enable checks.
*
* TODO: add fortran interface
* */
#include "cuda_runtime_api.h"
#include "cublas_v2.h"
#ifndef GPU_NO_CHECK_CALLS
#define CHECK(msg, val) __checkCuda(msg, (val), __FILE__, __LINE__, true)
#define WARN(msg, val) __checkCuda(msg, (val), __FILE__, __LINE__, false)
#define PTRINFO(msg, ptr) __print_cuda_ptr_info(msg, ptr)
#define MEMINFO(msg, ptr, size) __print_cuda_mem_info(msg, ptr, size)
#else
#define CHECK(msg, val) { int __i = (val); }
#define WARN(msg, val) { int __i = (val); }
#define PTRINFO(msg, ptr) { void *__p = (void *)(ptr); }
#define MEMINFO(msg, ptr, size) { void *__p = (void *)(ptr); }
#endif
inline int __checkCuda(const char *msg, cudaError_t val, const char *fname,
const int line, bool abort=true) {
if (val != cudaSuccess) {
fprintf(stderr,
"%s(%i): CUDA Error (%s) %i: %s\n",
fname, line, msg, val, cudaGetErrorString(val));
if (abort) {
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
return (int)val;
}
// overload for cublasStatus_t
inline int __checkCuda(const char *msg, cublasStatus_t val, const char *fname,
const int line, bool abort=true) {
if (val != CUBLAS_STATUS_SUCCESS) {
const char *err_s = "OTHER";
if (val == CUBLAS_STATUS_NOT_INITIALIZED) {
err_s = "NOT_INITIALIZED";
} else if (val == CUBLAS_STATUS_INVALID_VALUE) {
err_s = "INVALID_VALUE";
}
fprintf(stderr,
"%s(%i): CUDA Error (%s) %i: %s\n",
fname, line, msg, val, err_s);
if (abort) {
cudaDeviceReset();
exit(EXIT_FAILURE);
}
}
return (int)val;
}
inline void __print_cuda_ptr_info(const char *label, void *ptr) {
cudaError_t cu_err;
cudaPointerAttributes attr;
const char *type_name = NULL;
if (ptr == NULL) {
printf("CUDA pointer %s (%zx): NULL\n", label, ptr);
return;
}
// NB: the 'type' attribute was not added until CUDA 10.0, use memoryType
// for better compatibility
cu_err = cudaPointerGetAttributes(&attr, ptr);
if (cu_err != cudaSuccess) {
if (cu_err == cudaErrorInvalidValue) {
type_name = "Invalid (non-unified addressing)";
} else {
WARN("get pointer attr", cu_err);
return;
}
} else if (attr.memoryType == cudaMemoryTypeDevice) {
if (attr.isManaged) {
type_name = "Managed";
} else {
type_name = "Device";
}
} else if (attr.memoryType == cudaMemoryTypeHost) {
type_name = "Host";
}
printf("CUDA pointer %s (%zx): %s\n", label, ptr, type_name);
}
inline void __print_cuda_mem_info(const char *label, void *ptr, size_t size) {
cudaError_t cu_err;
cudaPointerAttributes pointer_attr;
int mem_attr = -123;
bool is_managed = false;
cu_err = cudaPointerGetAttributes(&pointer_attr, ptr);
if (cu_err != cudaSuccess) {
if (cu_err == cudaErrorInvalidValue) {
printf("CUDA PreferredLocation of '%s' is NOT CUDA\n", label);
return;
} else {
WARN("get pointer attr", cu_err);
return;
}
} else if (pointer_attr.memoryType == cudaMemoryTypeDevice) {
if (pointer_attr.isManaged) {
is_managed = true;
}
}
if (!is_managed) {
printf("CUDA PreferredLocation of '%s' is UNMANAGED\n", label);
return;
}
WARN("get mem range preferred location",
cudaMemRangeGetAttribute(&mem_attr, sizeof(mem_attr),
cudaMemRangeAttributePreferredLocation,
ptr, size));
if (mem_attr == cudaCpuDeviceId) {
printf("CUDA PreferredLocation of '%s' is CPU (%d)\n", label, mem_attr);
} else if (mem_attr == cudaInvalidDeviceId) {
printf("CUDA PreferredLocation of '%s' is INVALID (%d)\n",
label, mem_attr);
} else {
printf("CUDA PreferredLocation of '%s' is DEVICE (%d)\n",
label, mem_attr);
}
}

@ -0,0 +1,94 @@
/*
* =====================================================================================
*
* Filename: daxpy.c
*
* Description: Test cublas DAXPY, specifically to verify usage on
* summit with GPUMPS and all 6 GPUs shared over 42 procs.
*
* Version: 1.0
* Created: 05/20/2019 10:33:30 AM
* Revision: none
* Compiler: gcc
*
* Author: YOUR NAME (),
* Organization:
*
* =====================================================================================
*/
#include <stdio.h>
#include <stdlib.h>
#include "cublas_v2.h"
#include "cuda_runtime_api.h"
#define GPU_CHECK_CALLS
#include "cuda_error.h"
// column major
#define IDX2C(i,j,ld) (((j)*(ld))+(i))
static cublasHandle_t handle;
int main(int argc, char **argv) {
int n = 1024;
double a = 2.0;
double sum = 0.0;
double *x, *y, *d_x, *d_y;
x = (double *)malloc(n*sizeof(*x));
if (x == NULL) {
printf("host malloc(x) failed\n");
return EXIT_FAILURE;
}
y = (double *)malloc(n*sizeof(*y));
if (x == NULL) {
printf("host malloc(y) failed\n");
return EXIT_FAILURE;
}
for (int i=0; i<n; i++) {
x[i] = i+1;
y[i] = -i-1;
}
//CHECK("setDevice", cudaSetDevice(0));
CHECK( "cublas", cublasCreate(&handle) );
CHECK( "d_x", cudaMalloc((void**)&d_x, n*sizeof(*d_x)) );
CHECK( "d_y", cudaMalloc((void**)&d_y, n*sizeof(*d_y)) );
CHECK("d_x = x",
cudaMemcpy(d_x, x, n*sizeof(*x), cudaMemcpyHostToDevice) );
CHECK("d_y = y",
cudaMemcpy(d_y, y, n*sizeof(*y), cudaMemcpyHostToDevice) );
CHECK("daxpy",
cublasDaxpy(handle, n, &a, d_x, 1, d_y, 1) );
CHECK("daxpy sync", cudaDeviceSynchronize());
CHECK("y = d_y",
cudaMemcpy(y, d_y, n*sizeof(*y), cudaMemcpyDeviceToHost) );
CHECK("y = d_y sync", cudaDeviceSynchronize() );
sum = 0.0;
for (int i=0; i<n; i++) {
printf("%f\n", y[i]);
sum += y[i];
}
printf("SUM = %f\n", sum);
// cleanup
cudaFree(d_x);
cudaFree(d_y);
cublasDestroy(handle);
return EXIT_SUCCESS;
}

@ -0,0 +1,157 @@
/*
* =====================================================================================
*
* Filename: mpi_daxpy.c
*
* Description: Adds MPI to cublas test, to debug issue on Summit
*
* Version: 1.0
* Created: 05/20/2019 10:33:30 AM
* Revision: none
* Compiler: gcc
*
* Author: YOUR NAME (),
* Organization:
*
* =====================================================================================
*/
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#include "cublas_v2.h"
#include "cuda_runtime_api.h"
#define GPU_CHECK_CALLS
#include "cuda_error.h"
// column major
#define IDX2C(i,j,ld) (((j)*(ld))+(i))
static cublasHandle_t handle;
void set_rank_device(int n_ranks, int rank) {
int n_devices, device, ranks_per_device;
size_t memory_per_rank;
cudaDeviceProp device_prop;
CHECK("get device count", cudaGetDeviceCount(&n_devices));
if (n_ranks > n_devices) {
if (n_ranks % n_devices != 0) {
printf("ERROR: Number of ranks (%d) not a multiple of number of GPUs (%d)\n",
n_ranks, n_devices);
exit(EXIT_FAILURE);
}
ranks_per_device = n_ranks / n_devices;
device = rank / ranks_per_device;
} else {
ranks_per_device = 1;
device = rank;
}
CHECK("get device props", cudaGetDeviceProperties(&device_prop, device));
memory_per_rank = device_prop.totalGlobalMem / ranks_per_device;
printf("RANK[%d/%d] => DEVICE[%d/%d] mem=%zd\n", rank+1, n_ranks,
device+1, n_devices, memory_per_rank);
CHECK("set device", cudaSetDevice(device));
}
int main(int argc, char **argv) {
int n = 1024;
int world_size, world_rank;
double a = 2.0;
double sum = 0.0;
double *x, *y, *d_x, *d_y;
double *m_x, *m_y;
MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
x = (double *)malloc(n*sizeof(*x));
if (x == NULL) {
printf("host malloc(x) failed\n");
return EXIT_FAILURE;
}
y = (double *)malloc(n*sizeof(*y));
if (x == NULL) {
printf("host malloc(y) failed\n");
return EXIT_FAILURE;
}
for (int i=0; i<n; i++) {
x[i] = i+1;
y[i] = -i-1;
}
set_rank_device(world_size, world_rank);
//CHECK("setDevice", cudaSetDevice(0));
CHECK( "cublas", cublasCreate(&handle) );
CHECK( "d_x", cudaMalloc((void**)&d_x, n*sizeof(*d_x)) );
CHECK( "d_y", cudaMalloc((void**)&d_y, n*sizeof(*d_y)) );
CHECK( "m_x", cudaMallocManaged((void**)&m_x, n*sizeof(*m_x)) );
CHECK( "m_y", cudaMallocManaged((void**)&m_y, n*sizeof(*m_y)) );
CHECK("d_x = x",
cudaMemcpy(d_x, x, n*sizeof(*x), cudaMemcpyHostToDevice) );
CHECK("d_y = y",
cudaMemcpy(d_y, y, n*sizeof(*y), cudaMemcpyHostToDevice) );
CHECK("m_x = x",
cudaMemcpy(m_x, x, n*sizeof(*x), cudaMemcpyHostToDevice) );
CHECK("m_y = y",
cudaMemcpy(m_y, y, n*sizeof(*y), cudaMemcpyHostToDevice) );
MEMINFO("d_x", d_x, sizeof(d_x));
MEMINFO("d_y", d_y, sizeof(d_y));
MEMINFO("m_x", m_x, sizeof(m_x));
MEMINFO("m_y", m_y, sizeof(m_y));
MEMINFO("x", x, sizeof(x));
MEMINFO("y", y, sizeof(y));
CHECK("daxpy",
cublasDaxpy(handle, n, &a, m_x, 1, m_y, 1) );
CHECK("daxpy sync", cudaDeviceSynchronize());
/*
CHECK("y = d_y",
cudaMemcpy(y, m_y, n*sizeof(*y), cudaMemcpyDeviceToHost) );
*/
CHECK("y = d_y sync", cudaDeviceSynchronize() );
sum = 0.0;
for (int i=0; i<n; i++) {
//printf("%f\n", y[i]);
sum += m_y[i];
}
printf("%d/%d SUM = %f\n", world_rank, world_size, sum);
// cleanup
cudaFree(d_x);
cudaFree(d_y);
cudaFree(m_x);
cudaFree(m_y);
cublasDestroy(handle);
MPI_Finalize();
return EXIT_SUCCESS;
}
Loading…
Cancel
Save