You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
9.2 KiB
244 lines
9.2 KiB
#!/usr/bin/env julia
|
|
|
|
#=
|
|
--- Part Two ---
|
|
|
|
Now that you know how to find low-risk paths in the cave, you can try to find your way out.
|
|
|
|
The entire cave is actually five times larger in both dimensions than you thought; the area you originally scanned is just one tile in a 5x5 tile area that forms the full map. Your original map tile repeats to the right and downward; each time the tile repeats to the right or downward, all of its risk levels are 1 higher than the tile immediately up or left of it. However, risk levels above 9 wrap back around to 1. So, if your original map had some position with a risk level of 8, then that same position on each of the 25 total tiles would be as follows:
|
|
|
|
8 9 1 2 3
|
|
9 1 2 3 4
|
|
1 2 3 4 5
|
|
2 3 4 5 6
|
|
3 4 5 6 7
|
|
|
|
Each single digit above corresponds to the example position with a value of 8 on the top-left tile. Because the full map is actually five times larger in both dimensions, that position appears a total of 25 times, once in each duplicated tile, with the values shown above.
|
|
|
|
Here is the full five-times-as-large version of the first example above, with the original map in the top left corner highlighted:
|
|
|
|
11637517422274862853338597396444961841755517295286
|
|
13813736722492484783351359589446246169155735727126
|
|
21365113283247622439435873354154698446526571955763
|
|
36949315694715142671582625378269373648937148475914
|
|
74634171118574528222968563933317967414442817852555
|
|
13191281372421239248353234135946434524615754563572
|
|
13599124212461123532357223464346833457545794456865
|
|
31254216394236532741534764385264587549637569865174
|
|
12931385212314249632342535174345364628545647573965
|
|
23119445813422155692453326671356443778246755488935
|
|
22748628533385973964449618417555172952866628316397
|
|
24924847833513595894462461691557357271266846838237
|
|
32476224394358733541546984465265719557637682166874
|
|
47151426715826253782693736489371484759148259586125
|
|
85745282229685639333179674144428178525553928963666
|
|
24212392483532341359464345246157545635726865674683
|
|
24611235323572234643468334575457944568656815567976
|
|
42365327415347643852645875496375698651748671976285
|
|
23142496323425351743453646285456475739656758684176
|
|
34221556924533266713564437782467554889357866599146
|
|
33859739644496184175551729528666283163977739427418
|
|
35135958944624616915573572712668468382377957949348
|
|
43587335415469844652657195576376821668748793277985
|
|
58262537826937364893714847591482595861259361697236
|
|
96856393331796741444281785255539289636664139174777
|
|
35323413594643452461575456357268656746837976785794
|
|
35722346434683345754579445686568155679767926678187
|
|
53476438526458754963756986517486719762859782187396
|
|
34253517434536462854564757396567586841767869795287
|
|
45332667135644377824675548893578665991468977611257
|
|
44961841755517295286662831639777394274188841538529
|
|
46246169155735727126684683823779579493488168151459
|
|
54698446526571955763768216687487932779859814388196
|
|
69373648937148475914825958612593616972361472718347
|
|
17967414442817852555392896366641391747775241285888
|
|
46434524615754563572686567468379767857948187896815
|
|
46833457545794456865681556797679266781878137789298
|
|
64587549637569865174867197628597821873961893298417
|
|
45364628545647573965675868417678697952878971816398
|
|
56443778246755488935786659914689776112579188722368
|
|
55172952866628316397773942741888415385299952649631
|
|
57357271266846838237795794934881681514599279262561
|
|
65719557637682166874879327798598143881961925499217
|
|
71484759148259586125936169723614727183472583829458
|
|
28178525553928963666413917477752412858886352396999
|
|
57545635726865674683797678579481878968159298917926
|
|
57944568656815567976792667818781377892989248891319
|
|
75698651748671976285978218739618932984172914319528
|
|
56475739656758684176786979528789718163989182927419
|
|
67554889357866599146897761125791887223681299833479
|
|
|
|
Equipped with the full map, you can now find a path from the top left corner to the bottom right corner with the lowest total risk:
|
|
|
|
11637517422274862853338597396444961841755517295286
|
|
13813736722492484783351359589446246169155735727126
|
|
21365113283247622439435873354154698446526571955763
|
|
36949315694715142671582625378269373648937148475914
|
|
74634171118574528222968563933317967414442817852555
|
|
13191281372421239248353234135946434524615754563572
|
|
13599124212461123532357223464346833457545794456865
|
|
31254216394236532741534764385264587549637569865174
|
|
12931385212314249632342535174345364628545647573965
|
|
23119445813422155692453326671356443778246755488935
|
|
22748628533385973964449618417555172952866628316397
|
|
24924847833513595894462461691557357271266846838237
|
|
32476224394358733541546984465265719557637682166874
|
|
47151426715826253782693736489371484759148259586125
|
|
85745282229685639333179674144428178525553928963666
|
|
24212392483532341359464345246157545635726865674683
|
|
24611235323572234643468334575457944568656815567976
|
|
42365327415347643852645875496375698651748671976285
|
|
23142496323425351743453646285456475739656758684176
|
|
34221556924533266713564437782467554889357866599146
|
|
33859739644496184175551729528666283163977739427418
|
|
35135958944624616915573572712668468382377957949348
|
|
43587335415469844652657195576376821668748793277985
|
|
58262537826937364893714847591482595861259361697236
|
|
96856393331796741444281785255539289636664139174777
|
|
35323413594643452461575456357268656746837976785794
|
|
35722346434683345754579445686568155679767926678187
|
|
53476438526458754963756986517486719762859782187396
|
|
34253517434536462854564757396567586841767869795287
|
|
45332667135644377824675548893578665991468977611257
|
|
44961841755517295286662831639777394274188841538529
|
|
46246169155735727126684683823779579493488168151459
|
|
54698446526571955763768216687487932779859814388196
|
|
69373648937148475914825958612593616972361472718347
|
|
17967414442817852555392896366641391747775241285888
|
|
46434524615754563572686567468379767857948187896815
|
|
46833457545794456865681556797679266781878137789298
|
|
64587549637569865174867197628597821873961893298417
|
|
45364628545647573965675868417678697952878971816398
|
|
56443778246755488935786659914689776112579188722368
|
|
55172952866628316397773942741888415385299952649631
|
|
57357271266846838237795794934881681514599279262561
|
|
65719557637682166874879327798598143881961925499217
|
|
71484759148259586125936169723614727183472583829458
|
|
28178525553928963666413917477752412858886352396999
|
|
57545635726865674683797678579481878968159298917926
|
|
57944568656815567976792667818781377892989248891319
|
|
75698651748671976285978218739618932984172914319528
|
|
56475739656758684176786979528789718163989182927419
|
|
67554889357866599146897761125791887223681299833479
|
|
|
|
The total risk of this path is 315 (the starting position is still never entered, so its risk is not counted).
|
|
|
|
Using the full map, what is the lowest total risk of any path from the top left to the bottom right?
|
|
=#
|
|
|
|
infile = length(ARGS) > 0 ? ARGS[1] : "input.txt"
|
|
println("infile = ", infile)
|
|
|
|
risk_map = reduce(vcat, [parse.(Int, split(line, ""))'
|
|
for line in eachline(infile)])
|
|
|
|
function tile_map(R)
|
|
R2 = Matrix{eltype(R)}(undef, size(R) .* 5)
|
|
nrows, ncols = size(R)
|
|
for tile_row in 0:4
|
|
for tile_col in 0:4
|
|
add = tile_row + tile_col
|
|
rowstart = 1 + tile_row*nrows
|
|
rowend = rowstart + nrows - 1
|
|
colstart = 1 + tile_col*ncols
|
|
colend = colstart + ncols - 1
|
|
R2[rowstart:rowend, colstart:colend] = mod.(R .+ add .- 1, 9) .+ 1
|
|
end
|
|
end
|
|
return R2
|
|
end
|
|
|
|
risk_map = tile_map(risk_map)
|
|
|
|
#display(risk_map)
|
|
#println()
|
|
#exit()
|
|
|
|
function neighbor_idx(nrows, ncols, y, x)
|
|
v = CartesianIndex[]
|
|
if x > 1
|
|
push!(v, CartesianIndex(y, x-1))
|
|
end
|
|
if x < ncols
|
|
push!(v, CartesianIndex(y, x+1))
|
|
end
|
|
if y > 1
|
|
push!(v, CartesianIndex(y-1, x))
|
|
end
|
|
if y < nrows
|
|
push!(v, CartesianIndex(y+1, x))
|
|
end
|
|
return v
|
|
end
|
|
|
|
function relax(nrows, ncols, R, costs, row, col; first=false)
|
|
idx = neighbor_idx(nrows, ncols, row, col)
|
|
c = minimum(costs[i] for i in idx) + R[row, col]
|
|
if first || c < costs[row, col]
|
|
costs[row, col] = c
|
|
return true
|
|
end
|
|
return false
|
|
end
|
|
|
|
function relax_all(nrows, ncols, R, costs)
|
|
relaxed = false
|
|
for row in 1:nrows
|
|
for col in 1:ncols
|
|
v_relaxed = relax(nrows, ncols, R, costs, row, col)
|
|
relaxed = relaxed || v_relaxed
|
|
end
|
|
end
|
|
return relaxed
|
|
end
|
|
|
|
function get_costs(R)
|
|
costs = zeros(Int, size(R))
|
|
dirs = zeros(Int, size(R))
|
|
nrows, ncols = size(R)
|
|
|
|
# first pass, unconditional update looking only right/down. Avoids
|
|
# having to add an infinity value
|
|
costs[1,1] = 0
|
|
for col in 2:ncols
|
|
costs[1, col] = costs[1, col-1] + R[1, col]
|
|
end
|
|
for row in 2:nrows
|
|
costs[row, 1] = costs[row-1, 1] + R[row, 1]
|
|
for col in 2:ncols
|
|
if costs[row-1, col] < costs[row, col-1]
|
|
dirs[row, col] = 1
|
|
costs[row, col] = costs[row-1, col] + R[row, col]
|
|
else
|
|
costs[row, col] = costs[row, col-1] + R[row, col]
|
|
end
|
|
end
|
|
end
|
|
|
|
edges = ( (nrows-2)*(ncols-2)*4
|
|
+(nrows+ncols-4)*3
|
|
+4*2 )
|
|
max_passes = (nrows*ncols - 1) * edges
|
|
|
|
i = 1
|
|
while i <= max_passes
|
|
relaxed = relax_all(nrows, ncols, R, costs)
|
|
if !relaxed
|
|
break
|
|
end
|
|
i += 1
|
|
end
|
|
println("passes ", i)
|
|
|
|
return costs, dirs
|
|
end
|
|
|
|
costs, dirs = get_costs(risk_map)
|
|
|
|
if length(costs) < 1000
|
|
display(costs)
|
|
println()
|
|
end
|
|
|
|
println("cost = ", costs[end, end])
|